Citation: Chuan Yuan, Huayan Liu, Zekai Zhang, Hanfeng Lu, Qiulian Zhu, Yinfei Chen. Alkali-metal-modified ZSM-5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1861-1866. doi: 10.1016/S1872-2067(15)60970-6 shu

Alkali-metal-modified ZSM-5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid

  • Corresponding author: Yinfei Chen, 
  • Received Date: 3 June 2015
    Available Online: 6 September 2015

  • Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, temperature-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).
  • 加载中
    1. [1]

      [1] Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411

    2. [2]

      [2] Alonso D M, Bond J Q, Dumesic J A. Green Chem, 2010, 12: 1493

    3. [3]

      [3] Martinez F A C, Balciunas E M, Salgado J M, Gonzalez J M D, Converti A, Pinheira de Souza K. Trends Food Sci Technol, 2013, 30: 70

    4. [4]

      [4] Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels B F. Energy Environ Sci, 2013, 6: 1415

    5. [5]

      [5] Katryniok B, Paul S, Dumeignil F. Green Chem, 2010, 12: 1910

    6. [6]

      [6] Korstanje T J, Kleijn H, Jastrzebski J T B H, Klein Gebbink R J M. Green Chem, 2013, 15: 982

    7. [7]

      [7] Beerthuis R, Granollers M, Brown D R, Salavagione H J, Rothenberg G, Shiju N R. RSC Adv, 2015, 5: 4103

    8. [8]

      [8] Zhang J F, Feng X Z, Zhao Y L, Ji W J, Au C T. J Ind Eng Chem, 2014, 20: 1353

    9. [9]

      [9] Lunt J. Polym, Degrad Stab, 1998, 59: 145

    10. [10]

      [10] Xu X B, Lin J P, Cen P L. Chin J Chem Eng, 2006, 14: 419

    11. [11]

      [11] Peng J S, Li X L, Tang C M, Bai W. Green Chem, 2014, 16: 108

    12. [12]

      [12] Hong J H, Lee J M, Kim H, Hwang Y K, Chang J S, Vallgudi S B, Han Y H. Appl Catal A, 2011, 396: 194

    13. [13]

      [13] Wang H J, Yu D H, Sun P, Yan J, Wang Y, Huang H. Catal Commun, 2008, 9: 1799

    14. [14]

      [14] Zhang J F, Zhao Y L, Feng X Z, Pan M, Zhao J, Ji W J, Au C T. Catal Sci Technol, 2014, 4: 1376

    15. [15]

      [15] Yan B, Tao L Z, Liang Y, Xu B Q. ChemSusChem, 2014, 7: 1568

    16. [16]

      [16] Lee J M, Hwang D W, Hwang Y K, Halligudi S B, Chang J S, Han Y H. Catal Commun, 2010, 11: 1176

    17. [17]

      [17] Sun P, Yu D H, Tang Z C, Li H, Huang H. Ind Eng Chem Res, 2010, 49: 9082

    18. [18]

      [18] Xia W, Takahashi A, Nakamura I, Shimada H, Fujitani T. J Mol Catal A, 2010, 328: 114

    19. [19]

      [19] Vishwanathan V, Jun K W, Kim J W, Roh H S. Appl Catal A, 2004, 276: 251

    20. [20]

      [20] Sun P, Yu D H, Fu K M, Gu M Y, Wang Y, Huang H, Ying H J. Catal Commun, 2009, 10: 1345

    21. [21]

      [21] Zhang J F, Zhao Y L, Pan M, Feng X Z, Ji W J, Au C T. ACS Catal, 2010, 1: 32

    22. [22]

      [22] Satterfield C N. Heterogeneous Catalysis and Industrial Practice. 2nd Ed. New York: McGraw-Hill, 1991. Chapter 7

    23. [23]

      [23] Jun K W, Lee H S, Roh H S, Park S E. Bull Korean Chem Soc, 2003, 24: 106

    24. [24]

      [24] Yan J, Yu D H, Li H, Sun P, Huang H. J Rare Earths, 2010, 28: 803

    25. [25]

      [25] Yan J, Yu D H, Sun P, Huang H. Chin J Catal (闫婕, 余定华, 孙鹏, 黄和. 催化学报), 2011, 32: 405

    26. [26]

      [26] Deka R C, Hirao K. J Mol Catal A, 2002, 181: 275

  • 加载中
    1. [1]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    2. [2]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    12. [12]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(0)
  • Abstract views(413)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return