Citation:
Yang-Gang Wang, Xiao-Feng Yang, Jun Li. Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces[J]. Chinese Journal of Catalysis,
;2016, 37(1): 193-198.
doi:
10.1016/S1872-2067(15)60969-X
-
Low-temperature CO oxidation has attracted extensive interest in heterogeneous catalysis because of the potential applications in fuel cells, air cleaning, and automotive emission reduction. In the present study, theoretical investigations have been performed using density functional theory to elucidate the crystal plane effect and structure sensitivity of Co3O4 nano-catalysts toward catalyzing CO oxidation. It is shown that the surface Co-O ion pairs are the active site for CO oxidation on the Co3O4 surface. Because of stronger CO adsorption and easier removal of lattice oxygen ions, the Co3O4(011) surface is shown to be more reactive for CO oxidation than the Co3O4(001) surface, which is consistent with previous experimental results. By comparing the reaction pathways at different sites on each surface, we have further elucidated the nature of the crystal plane effect on Co3O4 surfaces and attributed the reactivity to the surface reducibility. Our results suggest that CO oxidation catalyzed by Co3O4 nanocrystals has a strong crystal plane effect and structure sensitivity. Lowering the vacancy formation energy of the oxide surface is key for high CO oxidation reactivity.
-
-
-
[1]
[1] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature, 2005, 437, 121.
-
[2]
[2] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science, 2007, 316, 732.
-
[3]
[3] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746.
-
[4]
[4] R. A. Van Santen, Acc. Chem. Res., 2009, 42, 57.
-
[5]
[5] X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, Y. D. Li, J. Am. Chem. Soc., 2009, 131, 3140.
-
[6]
[6] Y. G. Wang, X. F. Yang, L. H. Hu, Y. D. Li, J. Li, Chin. J. Catal., 2014, 35, 462.
-
[7]
[7] L. H. Hu, Q. Peng, Y. D. Li, J. Am. Chem. Soc., 2008, 130, 16136.
-
[8]
[8] L. H. Hu, K. Q. Sun, Q. Peng, B. Q. Xu, Y. D. Li, Nano Res., 2010, 3, 363.
-
[9]
[9] N. Venugopal, A. K. Pullur, W. S. Kim, H. P. Ha, Catal. Lett., 2014, 144, 2151.
-
[10]
[10] R. Edla, N. Patel, Z. E. Koura, R. Fernandes, N. Bazzanella, A. Miotello, Appl. Surf. Sci., 2014, 302, 105.
-
[11]
[11] Y. H. Teng, Y. Kusano, M. Azuma, M. Haruta, Y. Shimakawa, Catal. Sci. Technol., 2011, 1, 920.
-
[12]
[12] Y. G. Lv, Y. Li, W. J. Shen, Catal. Commun., 2013, 42, 116.
-
[13]
[13] G. L. Xiang, Y. G. Wang, D. Wu, T. Y. Li, J. He, J. Li, X. Wang, Chem. Eur. J., 2012, 18, 4759.
-
[14]
[14] G. L. Xiang, Y. G. Wang, J. Li, J. Zhuang, X. Wang, Sci. Rep., 2013, 3, 1411.
-
[15]
[15] L. X. Du, Z. J. Wu, Q. Wu, C. Jiang, L. Y. Piao, Chin. J. Catal., 2013, 34, 808.
-
[16]
[16] F. Zasada, P. Stelmachowski, G. Maniak, J. F. Paul, A. Kotarba, Z. Sojka, Catal. Lett., 2009, 127, 126.
-
[17]
[17] W. Piskorz, F. Zasada, P. Stelmachowski, A. Kotarba, Z. Sojka, Catal. Today, 2008, 137, 418.
-
[18]
[18] P. Broqvist, I. Panas, H. Perrson, J. Catal., 2002, 210, 198.
-
[19]
[19] X. L. Xu, E. Yang, J. Q. Li, Y. Li, W. K. Chen, ChemCatChem, 2009, 1, 384.
-
[20]
[20] D. E. Jiang, S. Dai, Phys. Chem. Chem. Phys., 2011, 13, 978.
-
[21]
[21] X. Y. Pang, C. Liu, D. C. Li, C. Q. Lv, G. C. Wang, ChemPhysChem, 2013, 14, 204.
-
[22]
[22] B Delley, J. Chem. Phys., 1990, 92, 508.
-
[23]
[23] B. Delley, J. Phys. Chem., 1996, 100, 6107.
-
[24]
[24] B. Delley, J. Chem. Phys., 2000, 113, 7756.
-
[25]
[25] J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.
-
[26]
[26] S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A, 2008, 281, 49.
-
[27]
[27] N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Comput. Mater. Sci., 2003, 28, 250.
-
[28]
[28] X. L. Xu, Z. H. Chen, Y. Li, W. K. Chen, J. Q. Li, Surf. Sci., 2009, 603, 653.
-
[29]
[29] S. Selcuk, A. Selloni, J. Phys. Chem. C, 2015, 119, 9973.
-
[30]
[30] J. Jansson, J. Catal., 2000, 194, 55.
-
[31]
[31] J. Jansson, M. Skoglundh, E. Fridell, P. Thormählen, Top Catal., 2001, 16/17, 385.
-
[32]
[32] Y. G. Wang, D. H. Mei, J. Li, R. Rousseau, J. Phys. Chem. C, 2013, 117, 23082.
-
[33]
[33] Y. G. Wang, D. H. Mei, V. A. Glezakou, J. Li, R. Rousseau, Nat. Commun., 2015, 6, 6511.
-
[34]
[34] H. F. Wang, R. Kavanagh, Y. L. Guo, Y. Guo, G. Z. Lu, P. Hu, J. Catal., 2012, 296, 110.
-
[35]
[35] J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem., 2009, 1, 37.
-
[36]
[36] X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Acc. Chem. Res., 2013, 46, 1740.
-
[37]
[37] B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634.
-
[38]
[38] Y. H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc., 2013, 135, 15425.
-
[1]
-
-
-
[1]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[2]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[3]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[4]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[5]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[6]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[7]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[8]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[9]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[10]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[11]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[12]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[13]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[14]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[15]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[16]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[17]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[18]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[19]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[20]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(788)
- HTML views(100)