Citation: Yang-Gang Wang, Xiao-Feng Yang, Jun Li. Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces[J]. Chinese Journal of Catalysis, ;2016, 37(1): 193-198. doi: 10.1016/S1872-2067(15)60969-X shu

Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces

  • Corresponding author: Jun Li, 
  • Received Date: 7 August 2015
    Available Online: 6 September 2015

    Fund Project: 国家重点基础研究发展计划(2011CB932401) (2011CB932401) 国家自然科学基金(21221062). (21221062)

  • Low-temperature CO oxidation has attracted extensive interest in heterogeneous catalysis because of the potential applications in fuel cells, air cleaning, and automotive emission reduction. In the present study, theoretical investigations have been performed using density functional theory to elucidate the crystal plane effect and structure sensitivity of Co3O4 nano-catalysts toward catalyzing CO oxidation. It is shown that the surface Co-O ion pairs are the active site for CO oxidation on the Co3O4 surface. Because of stronger CO adsorption and easier removal of lattice oxygen ions, the Co3O4(011) surface is shown to be more reactive for CO oxidation than the Co3O4(001) surface, which is consistent with previous experimental results. By comparing the reaction pathways at different sites on each surface, we have further elucidated the nature of the crystal plane effect on Co3O4 surfaces and attributed the reactivity to the surface reducibility. Our results suggest that CO oxidation catalyzed by Co3O4 nanocrystals has a strong crystal plane effect and structure sensitivity. Lowering the vacancy formation energy of the oxide surface is key for high CO oxidation reactivity.
  • 加载中
    1. [1]

      [1] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature, 2005, 437, 121.

    2. [2]

      [2] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science, 2007, 316, 732.

    3. [3]

      [3] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746.

    4. [4]

      [4] R. A. Van Santen, Acc. Chem. Res., 2009, 42, 57.

    5. [5]

      [5] X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, Y. D. Li, J. Am. Chem. Soc., 2009, 131, 3140.

    6. [6]

      [6] Y. G. Wang, X. F. Yang, L. H. Hu, Y. D. Li, J. Li, Chin. J. Catal., 2014, 35, 462.

    7. [7]

      [7] L. H. Hu, Q. Peng, Y. D. Li, J. Am. Chem. Soc., 2008, 130, 16136.

    8. [8]

      [8] L. H. Hu, K. Q. Sun, Q. Peng, B. Q. Xu, Y. D. Li, Nano Res., 2010, 3, 363.

    9. [9]

      [9] N. Venugopal, A. K. Pullur, W. S. Kim, H. P. Ha, Catal. Lett., 2014, 144, 2151.

    10. [10]

      [10] R. Edla, N. Patel, Z. E. Koura, R. Fernandes, N. Bazzanella, A. Miotello, Appl. Surf. Sci., 2014, 302, 105.

    11. [11]

      [11] Y. H. Teng, Y. Kusano, M. Azuma, M. Haruta, Y. Shimakawa, Catal. Sci. Technol., 2011, 1, 920.

    12. [12]

      [12] Y. G. Lv, Y. Li, W. J. Shen, Catal. Commun., 2013, 42, 116.

    13. [13]

      [13] G. L. Xiang, Y. G. Wang, D. Wu, T. Y. Li, J. He, J. Li, X. Wang, Chem. Eur. J., 2012, 18, 4759.

    14. [14]

      [14] G. L. Xiang, Y. G. Wang, J. Li, J. Zhuang, X. Wang, Sci. Rep., 2013, 3, 1411.

    15. [15]

      [15] L. X. Du, Z. J. Wu, Q. Wu, C. Jiang, L. Y. Piao, Chin. J. Catal., 2013, 34, 808.

    16. [16]

      [16] F. Zasada, P. Stelmachowski, G. Maniak, J. F. Paul, A. Kotarba, Z. Sojka, Catal. Lett., 2009, 127, 126.

    17. [17]

      [17] W. Piskorz, F. Zasada, P. Stelmachowski, A. Kotarba, Z. Sojka, Catal. Today, 2008, 137, 418.

    18. [18]

      [18] P. Broqvist, I. Panas, H. Perrson, J. Catal., 2002, 210, 198.

    19. [19]

      [19] X. L. Xu, E. Yang, J. Q. Li, Y. Li, W. K. Chen, ChemCatChem, 2009, 1, 384.

    20. [20]

      [20] D. E. Jiang, S. Dai, Phys. Chem. Chem. Phys., 2011, 13, 978.

    21. [21]

      [21] X. Y. Pang, C. Liu, D. C. Li, C. Q. Lv, G. C. Wang, ChemPhysChem, 2013, 14, 204.

    22. [22]

      [22] B Delley, J. Chem. Phys., 1990, 92, 508.

    23. [23]

      [23] B. Delley, J. Phys. Chem., 1996, 100, 6107.

    24. [24]

      [24] B. Delley, J. Chem. Phys., 2000, 113, 7756.

    25. [25]

      [25] J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.

    26. [26]

      [26] S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A, 2008, 281, 49.

    27. [27]

      [27] N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Comput. Mater. Sci., 2003, 28, 250.

    28. [28]

      [28] X. L. Xu, Z. H. Chen, Y. Li, W. K. Chen, J. Q. Li, Surf. Sci., 2009, 603, 653.

    29. [29]

      [29] S. Selcuk, A. Selloni, J. Phys. Chem. C, 2015, 119, 9973.

    30. [30]

      [30] J. Jansson, J. Catal., 2000, 194, 55.

    31. [31]

      [31] J. Jansson, M. Skoglundh, E. Fridell, P. Thormählen, Top Catal., 2001, 16/17, 385.

    32. [32]

      [32] Y. G. Wang, D. H. Mei, J. Li, R. Rousseau, J. Phys. Chem. C, 2013, 117, 23082.

    33. [33]

      [33] Y. G. Wang, D. H. Mei, V. A. Glezakou, J. Li, R. Rousseau, Nat. Commun., 2015, 6, 6511.

    34. [34]

      [34] H. F. Wang, R. Kavanagh, Y. L. Guo, Y. Guo, G. Z. Lu, P. Hu, J. Catal., 2012, 296, 110.

    35. [35]

      [35] J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem., 2009, 1, 37.

    36. [36]

      [36] X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Acc. Chem. Res., 2013, 46, 1740.

    37. [37]

      [37] B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634.

    38. [38]

      [38] Y. H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc., 2013, 135, 15425.

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(1)
  • Abstract views(788)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return