Citation: Maryam Hajjami, Farshid Ghorbani, Sedighe Rahimipanah, Safoora Roshani. Efficient preparation of Zr(IV)-salen grafted mesoporous MCM-41 catalyst for chemoselective oxidation of sulfides to sulfoxides and Knoevenagel condensation reactions[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1852-1860. doi: 10.1016/S1872-2067(15)60968-8 shu

Efficient preparation of Zr(IV)-salen grafted mesoporous MCM-41 catalyst for chemoselective oxidation of sulfides to sulfoxides and Knoevenagel condensation reactions

  • Corresponding author: Maryam Hajjami, 
  • Received Date: 19 June 2015
    Available Online: 6 September 2015

  • Zr(IV)-salen-MCM-41 was prepared by reaction of NH2-MCM-41 with salicylaldehyde to afford Schiff base ligands. Thereafter, ZrOCl2·8H2O was reacted with the Schiff base ligands for complex formation. The structural properties of the synthesized materials were investigated by a number of analytical techniques including X-ray diffraction, N2 sorption-desorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscpopy, and energy dispersive X-ray spectroscopy. Catalytic studies of the mesoporous materials functionalized with Zr(IV)-Schiff base complexes were investigated and extended to selective oxidation of sulfides to sulfoxides and the Knoevenagel condensation reactions of aldehydes with malononitriles and ethyl cyanoacetate. Additionally, catalyst recycling of the Zr-salen-MCM-41 materials was also studied.
  • 加载中
    1. [1]

      [1] Vartuli J C, Shih S S, Kresge C T, Beck J S. Stud Surf Sci Catal, 1998, 117: 13

    2. [2]

      [2] Knöfel C, Martin C, Hornebecq V, Llewellyn P L. J Phys Chem C, 2009, 113: 21726

    3. [3]

      [3] Meléndez-Ortiz H I, Perera-Mercado Y, Mercado-Silva J A, Olivares-Maldonado Y, Griselda G, García-Cerda L A. Ceram Int, 2014, 40: 9701

    4. [4]

      [4] Eimer G A, Costa M B G, Pierella L B, Anunziata O A. J Colloid Interface Sci, 2003, 263: 400

    5. [5]

      [5] Dey R K, Oliveira F J V E, Oliveira C. Colloids Surf A, 2008, 324: 41

    6. [6]

      [6] Taguchi A, Schuth F. Microporous Mesoporous Mater, 2005, 77: 1

    7. [7]

      [7] Jiang T S, Cheng J L, Liu W P, Fu L, Zhou X P, Zhao Q, Yin H B. J Solid State Chem, 2014, 218: 71

    8. [8]

      [8] Hajjami M, Ghorbani F, Bakhti F. Appl Catal A, 2014, 470: 303

    9. [9]

      [9] Wang G, Otuonye A N, Blair E A, Denton K, Tao Z, Asefa T. J Solid State Chem, 2009, 182: 1649

    10. [10]

      [10] Rigby S P, Fairhead M, van der Walle C F. Curr Pharm Des, 2008, 14: 1821

    11. [11]

      [11] Mehraban Z, Farzaneh F. Microporous Mesoporous Mater, 2006, 88: 84

    12. [12]

      [12] Selvam P, Bhatia S K, Sonwane C G. Ind Eng Chem Res, 2001, 40: 3237

    13. [13]

      [13] Hoffmann F, Cornelius M, Morell J, Froba M. Angew Chem Int Ed, 2006, 45: 3216

    14. [14]

      [14] Carreno M C. Chem Rev, 1995, 95: 1717

    15. [15]

      [15] Fernandez I, Khiar N. Chem Rev, 2003, 103: 3651

    16. [16]

      [16] Egami H, Katsuki T. J Am Chem Soc, 2007, 129: 8940

    17. [17]

      [17] Li G, Qian H F, Jin R C. Nanoscale, 2012, 4: 6714

    18. [18]

      [18] Kon Y, Yokoi T, Yoshioka M, Tanaka S, Uesaka Y, Mochizuki T, Sato K, Tatsumi T. Tetrahedron, 2014, 70: 7584

    19. [19]

      [19] Gogoi P, Kalita M, Bhattacharjee T, Barman P. Tetrahedron Lett, 2014, 55: 1028

    20. [20]

      [20] Sharma V B, Jain S L, Sain B. J Mol Catal A, 2004, 212: 55

    21. [21]

      [21] Mohammadinezhad A, Nasseri M A, Salimi M. RSC Adv, 2014, 4: 39870

    22. [22]

      [22] Bahrami K. Tetrahedron Lett, 2006, 47: 2009

    23. [23]

      [23] Bagherzadeh M, Tahsinia L, Latifi R, Ellern A, Woo L K. Inorg Chim Acta, 2008, 361: 2019

    24. [24]

      [24] Wu X F. Tetrahedron Lett, 2012, 53: 4328

    25. [25]

      [25] Zeng Q L, Gao Y X, Dong J Y, Weng W, Zhao Y F. Tetrahedron Asymmetry, 2011, 22: 717

    26. [26]

      [26] Tanaka H, Nishikawa H, Uchida T, Katsuki T. J Am Chem Soc, 2010, 132: 12034

    27. [27]

      [27] Kiriharaa M, Yamamoto J, Noguchi T, Hirai Y. Tetrahedron Lett, 2009, 50: 1180

    28. [28]

      [28] Karimi B, Ghoreishi-Nezhad M, Clark J H. Org Lett, 2005, 7: 625

    29. [29]

      [29] Knoevenagel E. Ber Deutschen Chem Ges, 1894, 27: 2345

    30. [30]

      [30] Nawrot-Modranka J, Nawrot E, Graczyk J. Eur J Med Chem, 2006, 41: 1301

    31. [31]

      [31] Zicmanis A, Anteina L. Tetrahedron Lett, 2014, 55: 2027

    32. [32]

      [32] Mallouk S, Bougrin K, Laghzizil A, Benhida R. Molecules, 2010, 15: 813

    33. [33]

      [33] Liu S, Ni Y X, Yang J G, Hu H N, Ying A G, Xu S L. Chin J Chem, 2014, 32: 343

    34. [34]

      [34] Girija D, Bhojya Naik H S, Kumar B V, Sudhamani C N, Harish K N. Lett Org Chem, 2013, 10: 468

    35. [35]

      [35] Mase N, Horibe T. Org Lett, 2013, 15: 1854

    36. [36]

      [36] Rao P S, Venkataratnam R V. Tetrahedron Lett, 1991, 32: 5821

    37. [37]

      [37] Reddy T I, Varma R S. Tetrahedron Lett, 1997, 38: 1721

    38. [38]

      [38] Bigi F, Chesini L, Maggi R, Sartori G. J Org Chem, 1999, 64: 1033

    39. [39]

      [39] Kumbhare R M, Sridhar M. Catal Commun, 2008, 9: 403

    40. [40]

      [40] Malakooti R, Bardajee G R, Mahmoudi H, Kakavand N. Catal Lett, 2013, 143: 853

    41. [41]

      [41] Malakooti R, Bardajee G R, Hadizadeh S, Atashin H, Khanjari H. Transition Met Chem, 2014, 39: 47

    42. [42]

      [42] Ma L, Su F, Zhang X H, Song D Y, Guo Y H, Hu J L. Microporous Mesoporous Mater, 2014, 184: 37

    43. [43]

      [43] Das S, Bhunia S, Maity T, Koner S. J Mol Catal A, 2014, 394: 188

    44. [44]

      [44] Dhara K, Sarkar K, Srimani D, Saha S K, Chattopadhyay P, Bhaumik A. Dalton Trans, 2010, 39: 6395

    45. [45]

      [45] Nikoorazm M, Ghorbani-Choghamarani A, Mahdavi H, Esmaeili S M. Microporous Mesoporous Mater, 2015, 211: 174

    46. [46]

      [46] Bordoloi A, Amrute A P, Halligudi S B. Catal Commun, 2008, 10: 45

    47. [47]

      [47] Luo Y, Lin J. Microporous Mesoporous Mater, 2005, 86: 23

    48. [48]

      [48] Wang X L, Wu G D, Wei W, Sun Y H. Catal Lett, 2010, 136: 96

    49. [49]

      [49] Chen H X, Wang Y C. Ceram Int, 2002, 28: 541

    50. [50]

      [50] Kumar D, Schumacher K, du Fresne von Hohenesche C, Grun M, Unger K K. Colloids Surfaces A, 2001, 187-188: 109

    51. [51]

      [51] Meléndez-Ortiz H I, Perera-Mercado Y A, García-Cerda L A, Mercado-Silva J A, Castruita G. Ceram Int, 2014, 40: 4155

    52. [52]

      [52] McKittrick M W, Jones C W. Chem Mater, 2003, 15: 1132

    53. [53]

      [53] Ghorbani F, Habibollah Y, Mehraban Z, Celik M S, Ghoreyshi A A, Anbia M. J Taiwan Inst Chem Eng, 2013, 44: 821

    54. [54]

      [54] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. J Am Chem Soc, 1998, 120: 6024

    55. [55]

      [55] Carraro P, Elías V, García Blanco A A, Sapag K, Eimer G, Oliva M. Int J Hydrogen Energy, 2014, 39: 8749

    56. [56]

      [56] Bhagiyalakshmi M, Yun L J, Anuradha R, Jang H T. J Hazard Mater, 2010, 175: 928

    57. [57]

      [57] Kim S, Ida J, Guliants V V, Lin Y S. J Phys Chem B, 2005, 109: 6287

    58. [58]

      [58] Shahbazi A, Younesi H, Badiei A. Chem Eng J, 2011, 168: 505

    59. [59]

      [59] Li J S, Miao X Y, Hao Y X, Zhao J Y, Sun X Y, Wang L J. J Colloid Interface Sci, 2008, 318: 309

    60. [60]

      [60] Parida K M, Rath D. J Mol Catal A, 2009, 310: 93

    61. [61]

      [61] Heidari A, Younesi H, Mehraban Z. Chem Eng J, 2009, 153: 70

    62. [62]

      [62] Das R, Chakraborty D. Tetrahedron Lett, 2010, 51: 6255

    63. [63]

      [63] Rostami A, Atashkar B, Gholami H. Catal Commun, 2013, 37: 69

    64. [64]

      [64] Yue C B, Mao A Q, Wei Y Y, Lu M J. Catal Commun, 2008, 9: 1571

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    9. [9]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    10. [10]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    11. [11]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    19. [19]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(0)
  • Abstract views(380)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return