Citation: Peter Adeniyi Alaba, Yahaya Muhammad Sani, Wan Mohd Ashri Wan Daud. Synthesis and characterization of hierarchical nanoporous HY zeolites from acid-activated kaolin[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1846-1851. doi: 10.1016/S1872-2067(15)60962-7 shu

Synthesis and characterization of hierarchical nanoporous HY zeolites from acid-activated kaolin

  • Corresponding author: Wan Mohd Ashri Wan Daud, 
  • Received Date: 1 May 2015
    Available Online: 15 August 2015

  • Hierarchical nanoporous HY zeolites were synthesized from acid-activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external surface area without greatly reducing the micropore volume. The resulting products were characterized using X-ray diffraction (XRD), X-ray fluorescence, N2 adsorption, and NH3 temperature-programmed desorption. The nanoporous HY zeolite with the highest HF was obtained by aging for 48 h and a crystallization time of 24 h. The acidity and crystallinity varied depending on the operating parameters. Incorporation of an appropriate amount of NaCl was also vital in maximizing the HF, crystallinity, and acidity. The sample crystallinities were determined by comparing their XRD peak intensities with those of a conventional Y zeolite. The results show that optimizing this process could lead to a widely acceptable commercial route for HY zeolite production.
  • 加载中
    1. [1]

      [1] Karami D, Rohani S. Chem Eng Process, 2009, 48: 1288

    2. [2]

      [2] Shen S C, Chen Q, Chow P S, Tan G H, Zeng X T, Wang Z, Tan R B H. J Phys Chem C, 2007, 111: 700

    3. [3]

      [3] Verhoef M J, Kooyman P J, van der Waal J C, Rigutto M S, Peters J A, van Bekkum H. Chem Mater, 2001, 13: 683

    4. [4]

      [4] Groen J C, Moulijn J A, Pérez-Ramírez J. J Mater Chem, 2006, 16: 2121

    5. [5]

      [5] Guo W P, Huang L M, Deng P, Xue Z Y, Li Q Z. Microporous Mesoporous Mater, 2001, 44-45: 427

    6. [6]

      [6] Huang L M, Guo W P, Deng P, Xue Z Y, Li Q Z. J Phys Chem B, 2000, 104: 2817

    7. [7]

      [7] Tan Q F, Bao X J, Song T C, Fan Y, Shi G, Shen B, Liu C H, Gao X H. J Catal, 2007, 251: 69

    8. [8]

      [8] Ogura M, Shinomiya S Y, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M. Appl Catal A, 2001, 219: 33

    9. [9]

      [9] Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. J Am Chem Soc, 2000, 122: 7116

    10. [10]

      [10] Han Y, Wu S, Sun Y Y, Li D S, Xiao F S, Liu J, Zhang X Z. Chem Mater, 2002, 14: 1144

    11. [11]

      [11] van Donk S, Janssen A H, Bitter J H, de Jong K P. Catal Rev-Sci Eng, 2003, 45: 297

    12. [12]

      [12] Xu M C, Cheng M J, Bao X H. Chem Commun, 2000: 1873

    13. [13]

      [13] Rong T J, Xiao J K. Mater Lett, 2002, 57: 297

    14. [14]

      [14] Lenarda M, Storaro L, Talon A, Moretti E, Riello P. J Colloid Interface Sci, 2007, 311: 537

    15. [15]

      [15] Liu X M, Yan Z F, Wang H P, Luo Y T. J Nat Gas Chem, 2003, 12: 63

    16. [16]

      [16] Chandrasekhar S, Pramada P. Appl Clay Sci, 2004, 27: 187

    17. [17]

      [17] Yu J, Shi J L, Chen H R, Yan J N, Yan D S. Microporous Mesoporous Mater, 2001, 46: 153

    18. [18]

      [18] Hosseinpour N, Mortazavi Y, Bazyari A, Khodadadi A A. Fuel Process Technol, 2009, 90: 171

    19. [19]

      [19] Frunz L, Prins R, Pirngruber G D. Microporous Mesoporous Mater, 2006, 88: 152

    20. [20]

      [20] Zheng J J, Yi Y M, Wang W L, Guo K, Ma J H, Li R F. Microporous Mesoporous Mater, 2013, 171: 44

    21. [21]

      [21] Pérez-Ramírez J, Verboekend D, Bonilla A, Abello S. Adv Funct Mater, 2009, 19: 3972

    22. [22]

      [22] Zheng J J, Zeng Q H, Yi Y M, Wang Y, Ma J H, Qin B, Zhang X W, Sun W F, Li R F. Catal Today, 2011, 168: 124

    23. [23]

      [23] Zheng J J, Zeng Q H, Zhang Y Y, Wang Y, Ma J H, Zhang X W, Sun W F, Li R F. Chem Mater, 2010, 22: 6065

    24. [24]

      [24] Konno H, Tago T, Nakasaka Y, Ohnaka R, Nishimura J I, Masuda T. Microporous Mesoporous Mater, 2013, 175: 25

    25. [25]

      [25] Konno H, Okamura T, Kawahara T, Nakasaka Y, Tago T, Masuda T. Chem Eng J, 2012, 207-208: 490

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    12. [12]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    16. [16]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(0)
  • Abstract views(305)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return