Citation:
Martin Šustek, Blažej Horváth, Ivo Vávra, Miroslav Gál, Edmund Dobročka, Milan Hronec. Effects of structures of molybdenum catalysts on selectivity in gas-phase propylene oxidation[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1900-1909.
doi:
10.1016/S1872-2067(15)60961-5
-
Molybdenum-based catalysts for the gas-phase oxidation of propylene with air were investigated. Various types of silica-supported molybdenum oxide and molybdenum-bismuth mixed oxide catalysts were prepared from inorganic and organometallic molybdenum precursors using wet impregnation and physical vapor deposition methods. The epoxidation activities of the prepared catalysts showed direct correlations with their nanostructures, which were identified using transmission electron microscopy. The appearance of a partly or fully crystalline molybdenum oxide phase, which interacted poorly with the silica support, decreased the selectivity for propylene oxide formation to below 10%; non-crystalline octahedrally coordinated molybdenum species anchored on the support gave propylene oxide formations greater than 55%, with 11% propylene conversion. Electrochemical characterization of molybdenum oxides with various morphologies showed the importance of structural defects. Direct promotion by bismuth of the epoxidation reactivities over molybdenum oxides is disputed.
-
-
-
[1]
[1] Nijhuis T A, Makkee M, Moulijn J A, Weckhuysen B M. Ind Eng Chem Res, 2006, 45: 3447
-
[2]
[2] Pang Y J, Chen X H, Xu C Z, Lei Y J, Wei K M. ChemCatChem, 2014, 6: 876
-
[3]
[3] Kizilkaya A C, Senkan S, Onal I. J Mol Catal A, 2010, 330: 107
-
[4]
[4] Shen K, Liu X H, Lu G Z, Miao Y X, Guo Y L, Wang Y Q, Guo Y. J Mol Catal A, 2013, 373: 78
-
[5]
[5] Monnier J R. Appl Catal A, 2001, 221: 73
-
[6]
[6] Zheng X, Zhang Q, Guo Y L, Zhan W C, Guo Y, Wang Y S, Lu G Z. J Mol Catal A, 2012, 357: 106
-
[7]
[7] Chu H, Yang L J, Zhang Q H, Wang Y. J Catal, 2006, 241: 225
-
[8]
[8] Suo Z H, Jin M S, Lu J Q, Wei Z B, Li C. J Nat Gas Chem, 2008, 17: 184
-
[9]
[9] Wu G Q, Wang Y Q, Wang L N, Feng W P, Shi H N, Lin Y, Zhang T, Jin X, Wang S H, Wu X X, Yao P X. Chem Eng J, 2013, 215-216: 306
-
[10]
[10] Liu T, Hacarlioglu P, Oyama S T, Luo M F, Pan X R, Lu J Q. J Catal, 2009, 267: 202
-
[11]
[11] Murata K, Liu Y Y, Mimura N, Inaba M. Catal Commun, 2003, 4: 385
-
[12]
[12] Hashem A M, Groult H, Mauger A, Zaghib K,Julien C M. J Power Sources, 2012, 219: 126
-
[13]
[13] Marin Flores O G, Ha S. Appl Catal A, 2009, 352: 124
-
[14]
[14] Horváth B, Hronec M, Vávra I, Šustek M, Križanová Z, Dérer J, Dobročka E. Catal Commun, 2013, 34: 16
-
[15]
[15] Song Z X, Mimura N, Bravo-Suárez J J, Akita T, Tsubota S, Oyama S T. Appl Catal A, 2007, 316: 142
-
[16]
[16] Sian T S, Reddy G B. Sol Energy Mater Sol Cells, 2004, 82: 375
-
[17]
[17] Wang L, Peng B, Peng L N, Guo X F, Xie Z K, Ding W P. Sci Rep, 2013, 3: 2881
-
[18]
[18] Balula S S, Bruno S M, Gomes A C, Valente A A, Pillinger M, Gonçalves I S, MacQuarrie D J, Clark J H. Inorg Chim Acta, 2012, 387: 234
-
[19]
[19] Nguyen H H P, Ohkita H, Mizushima T, Kakuta N. Catal Lett, 2013, 143: 902
-
[20]
[20] Bañares M A. Catal Today, 1999, 51: 319
-
[21]
[21] Rabette P, Olivier D. J Less Common Met, 1974, 36: 299
-
[22]
[22] Klinbumrung A, Thongtem T, Thongtem S. J Nanomater, 2012: 930763
-
[23]
[23] Tokarz-Sobieraj R, Hermann K, Witko M, Blume A, Mestl G, Schlögl R. Surf Sci, 2001, 489: 107
-
[24]
[24] Yuan S P, Wang J G, Li Y W, Peng S Y. Catal Today, 2000, 61: 243
-
[25]
[25] Collart O, Van Der Voort P, Vansant E F, Gustin E, Bouwen A, Schoemaker D, Ramachandra Rao R, Weckhuysen B M, Schoonheydt R A. Phys Chem Chem Phys, 1999, 1: 4099
-
[26]
[26] Balcar H, Mishra D, Marceau E, Carrier X, Žilková N, Bastl Z. Appl Catal A, 2009, 359: 129
-
[27]
[27] Jeyakumar K, Chand D K. J Chem Sci, 2009, 121: 111
-
[28]
[28] Rempel K U, Williams-Jones A E, Migdisov A A. Geochim Cosmochim Acta, 2008, 72: 3074
-
[29]
[29] Cotton F A, Wilkinson G. Advanced Inorganic Chemistry. 5th ed. New York: John Wiley & Sons, 1988. 829
-
[30]
[30] Taylor M J, Jirong W, Rickard C E F. Polyhedron, 1993, 12: 1433
-
[31]
[31] Litinskii A O, Narushis Y P, Shatkovskaya D B. J Struct Chem, 1985, 26: 843
-
[32]
[32] Spahr M E, Novak P, Haas O, Nesper R. J Power Sources, 1995, 54: 346
-
[33]
[33] McEvoy T M, Stevenson K J, Hupp J T, Dang X J. Langmuir, 2003, 19: 4316
-
[34]
[34] Dong W, Mansour A N, Dunn B. Solid State Ionics, 2001, 144: 31
-
[35]
[35] Kongmark C, Martis V, Rubbens A, Pirovano C, Löfberg A, Sankar G, Bordes-Richard E, Vannier R N, Van Beek W. Chem Commun, 2009: 4850
-
[36]
[36] Liu Y W, Zhang X M, Suo J S. Chin J Catal (刘义武, 张小明, 索继栓. 催化学报), 2013, 34: 336
-
[37]
[37] Su J, Zhou J C, Liu C Y, Wang X S, Guo H C. Chin J Catal (苏际, 周军成, 刘春燕, 王祥生, 郭洪臣. 催化学报), 2010, 31: 1195
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Tao Wen , Tao Zhang , Changguo Sun , Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055
-
[3]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[4]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[5]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[6]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[7]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[8]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[9]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[10]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[11]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[12]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[13]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[14]
Zhanhui Yang , Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032
-
[15]
Shengyan Yang , Xiangzhen Meng , Xin Wang , Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019
-
[16]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[17]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[18]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[19]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[20]
Xianggui Kong , Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(293)
- HTML views(15)