Citation:
Weijiong Dai, Junqing Yan, Ke Dai, Landong Li, Naijia Guan. Ultrafine metal nanoparticles loaded on TiO2 nanorods: Synthesis strategy and photocatalytic activity[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1968-1975.
doi:
10.1016/S1872-2067(15)60954-8
-
Ultrafine noble metal nanoparticles (Pt, Pd, or Au) co-catalyst loaded on the surface of rutile and brookite TiO2 were prepared via a simple photo-deposition strategy under high vacuum conditions. The properties of the prepared samples were determined by different characterization techniques, including X-ray diffraction, transmission electron microscopy, diffuse reflectance ultraviolet-visible spectroscopy, and photoluminescence spectroscopy. The photocatalytic performance of the samples was evaluated by monitoring the reforming of methanol. Co-catalyst loading greatly improved the photocatalytic activity of TiO2. Specifically, Pt-TiO2 displayed the highest photocatalytic activity among all samples studied, followed by Pd-TiO2 and then Au-TiO2. Furthermore, this photocatalytic behavior was not influenced by the intrinsic nature of the TiO2 semiconductor photocatalyst. Similar photocatalytic activity trends were achieved with both sets of noble metal-loaded photocatalysts prepared using rutile and brookite TiO2 as supports. By examining the physicochemical and photocatalytic properties, the factors controlling the photocatalytic activity of the noble metal-loaded TiO2 samples were discussed in detail.
-
Keywords:
- Photocatalyst,
- Hydrogen production,
- Rutile,
- Brookite,
- Co-catalyst
-
-
-
[1]
[1] Linsebigler A L, Lu G Q, Yates J T. Chem Rev, 1995, 95: 735
-
[2]
[2] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem Rev, 1995, 95: 69
-
[3]
[3] Nowotny J, Bak T, Nowotny M K, Sheppard L R. Int J Hydrogen Energy, 2007, 32:2609
-
[4]
[4] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295
-
[5]
[5] Kim H, Choi W. Appl Catal B, 2007, 69: 127
-
[6]
[6] Fan X X, Chen X Y, Zhu S P, Li Z S, Yu T, Ye J H, Zou Z G. J Mol Catal A, 2008, 284: 155
-
[7]
[7] Zheng X J, Wei L F, Zhang Z H, Jiang Q J, Wei Y J, Xie B, Wei M B. Int J Hydrogen Energy, 2009, 34: 9033
-
[8]
[8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269
-
[9]
[9] Choi W Y, Termin A, Hoffmann M R. J Phys Chem, 1994, 98: 13669
-
[10]
[10] Xu A W, Gao Y, Liu H Q. J Catal, 2002, 207: 151
-
[11]
[11] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891
-
[12]
[12] Yermokhina N I, Bukhtiyarov V K, Kishenya Y V, Illin V G, Manorik P A, Kapitanchuk L M, Smiyan O D, Puziy A M, Kamenskih D S, Bortyshevskyy V A. Int J Hydrogen Energy, 2011, 36: 1364
-
[13]
[13] Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu Jimmy C. 催化学报), 2013, 34: 1250
-
[14]
[14] Hu X J, Shi Y K, Zhu B L, Zhang S M, Huang W P. Chin J Catal (胡晓静, 石玉坤, 朱宝林, 张守民, 黄唯平. 催化学报), 2015, 36: 221
-
[15]
[15] Zhang F X, Jin R C, Chen J X, Shao C Z, Gao W L, Li L D, Guan N J. J Catal, 2005, 232: 424
-
[16]
[16] Zhang F X, Miao S, Yang Y L, Zhang X, Chen J X, Guan N J. J Phys Chem C, 2008, 112: 7665
-
[17]
[17] Feng W, Wu G J, Li L D, Guan N J. Green Chem, 2011, 13: 3265
-
[18]
[18] Anpo M, Takeuchi M. J Catal, 2003, 216: 505
-
[19]
[19] Fu X L, Long J L, Wang X X, Leung D Y C, Ding Z X, Wu L, Zhang Z Z, Li Z H, Fu X Z. Int J Hydrogen Energy, 2008, 33: 6484
-
[20]
[20] Zhang N, Liu S Q, Fu X Z, Xu Y J. J Phys Chem C, 2011, 115: 9136
-
[21]
[21] Bahruji H, Bowker M, Davies P R, Kennedy J, Morgan D J. Int J Hydrogen Energy, 2015, 40: 1465
-
[22]
[22] Yang J H, Wang D, Han H X, Li C. Acc Chem Res, 2013, 46: 1900
-
[23]
[23] Zhang J, Yan S, Fu L, Wang F, Yuan M Q, Luo G X, Xu Q, Wang X, Li C. Chin J Catal (张静, 阎松, 付鹿, 王飞, 原梦琼, 罗根祥, 徐倩, 王翔, 李灿. 催化学报), 2011, 32: 983
-
[24]
[24] Li Z, Cong S, Xu Y M. ACS Catal, 2014, 4: 3273
-
[25]
[25] Yan J Q, Wu G J, Guan N J, Li L D, Li Z X, Cao X Z. Phys Chem Chem Phys, 2013, 15: 10978
-
[26]
[26] Kandiel T A, Feldhoff A, Robben L, Dillert R, Bahnemann D W. Chem Mater, 2010, 22, 2050
-
[27]
[27] Tian Y, Tatsuma T. J Am Chem Soc, 2005, 127: 7632
-
[28]
[28] Furube A, Du L, Hara K, Katoh R, Tachiya M. J Am Chem Soc, 2007, 129: 14852
-
[29]
[29] Fang J, Cao S W, Wang Z, Shahjamali M M, Loo S C J, Barber J, Xue C. Int J Hydrogen Energy, 2012, 37: 17853
-
[30]
[30] Michaelson H B. J Appl Phys, 1977, 48: 4729
-
[31]
[31] Tan T T Y, Yip C K, Beydoun D, Amal R. Chem Eng J, 2003, 95: 179
-
[32]
[32] Wang W N, An W J, Ramalingam B, Mukherjee S, Niedzwiedzki D M, Gangopadhyay S, Biswas P. J Am Chem Soc, 2012, 134: 11276
-
[33]
[33] Kominami H, Furusho A, Murakami S Y, Inoue H, Kera Y, Ohtani B. Catal Lett, 2001, 76: 31
-
[1]
-
-
-
[1]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[2]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[3]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[4]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[5]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[6]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
-
[7]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[8]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[9]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[10]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[11]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[12]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[14]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[15]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[16]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[17]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[18]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[19]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[20]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(498)
- HTML views(76)