Citation: Weijiong Dai, Junqing Yan, Ke Dai, Landong Li, Naijia Guan. Ultrafine metal nanoparticles loaded on TiO2 nanorods: Synthesis strategy and photocatalytic activity[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1968-1975. doi: 10.1016/S1872-2067(15)60954-8 shu

Ultrafine metal nanoparticles loaded on TiO2 nanorods: Synthesis strategy and photocatalytic activity

  • Corresponding author: Ke Dai,  Naijia Guan, 
  • Received Date: 17 June 2015
    Available Online: 29 June 2015

    Fund Project: 国家自然科学基金(21307035) (21307035)

  • Ultrafine noble metal nanoparticles (Pt, Pd, or Au) co-catalyst loaded on the surface of rutile and brookite TiO2 were prepared via a simple photo-deposition strategy under high vacuum conditions. The properties of the prepared samples were determined by different characterization techniques, including X-ray diffraction, transmission electron microscopy, diffuse reflectance ultraviolet-visible spectroscopy, and photoluminescence spectroscopy. The photocatalytic performance of the samples was evaluated by monitoring the reforming of methanol. Co-catalyst loading greatly improved the photocatalytic activity of TiO2. Specifically, Pt-TiO2 displayed the highest photocatalytic activity among all samples studied, followed by Pd-TiO2 and then Au-TiO2. Furthermore, this photocatalytic behavior was not influenced by the intrinsic nature of the TiO2 semiconductor photocatalyst. Similar photocatalytic activity trends were achieved with both sets of noble metal-loaded photocatalysts prepared using rutile and brookite TiO2 as supports. By examining the physicochemical and photocatalytic properties, the factors controlling the photocatalytic activity of the noble metal-loaded TiO2 samples were discussed in detail.
  • 加载中
    1. [1]

      [1] Linsebigler A L, Lu G Q, Yates J T. Chem Rev, 1995, 95: 735

    2. [2]

      [2] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem Rev, 1995, 95: 69

    3. [3]

      [3] Nowotny J, Bak T, Nowotny M K, Sheppard L R. Int J Hydrogen Energy, 2007, 32:2609

    4. [4]

      [4] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295

    5. [5]

      [5] Kim H, Choi W. Appl Catal B, 2007, 69: 127

    6. [6]

      [6] Fan X X, Chen X Y, Zhu S P, Li Z S, Yu T, Ye J H, Zou Z G. J Mol Catal A, 2008, 284: 155

    7. [7]

      [7] Zheng X J, Wei L F, Zhang Z H, Jiang Q J, Wei Y J, Xie B, Wei M B. Int J Hydrogen Energy, 2009, 34: 9033

    8. [8]

      [8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    9. [9]

      [9] Choi W Y, Termin A, Hoffmann M R. J Phys Chem, 1994, 98: 13669

    10. [10]

      [10] Xu A W, Gao Y, Liu H Q. J Catal, 2002, 207: 151

    11. [11]

      [11] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891

    12. [12]

      [12] Yermokhina N I, Bukhtiyarov V K, Kishenya Y V, Illin V G, Manorik P A, Kapitanchuk L M, Smiyan O D, Puziy A M, Kamenskih D S, Bortyshevskyy V A. Int J Hydrogen Energy, 2011, 36: 1364

    13. [13]

      [13] Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu Jimmy C. 催化学报), 2013, 34: 1250

    14. [14]

      [14] Hu X J, Shi Y K, Zhu B L, Zhang S M, Huang W P. Chin J Catal (胡晓静, 石玉坤, 朱宝林, 张守民, 黄唯平. 催化学报), 2015, 36: 221

    15. [15]

      [15] Zhang F X, Jin R C, Chen J X, Shao C Z, Gao W L, Li L D, Guan N J. J Catal, 2005, 232: 424

    16. [16]

      [16] Zhang F X, Miao S, Yang Y L, Zhang X, Chen J X, Guan N J. J Phys Chem C, 2008, 112: 7665

    17. [17]

      [17] Feng W, Wu G J, Li L D, Guan N J. Green Chem, 2011, 13: 3265

    18. [18]

      [18] Anpo M, Takeuchi M. J Catal, 2003, 216: 505

    19. [19]

      [19] Fu X L, Long J L, Wang X X, Leung D Y C, Ding Z X, Wu L, Zhang Z Z, Li Z H, Fu X Z. Int J Hydrogen Energy, 2008, 33: 6484

    20. [20]

      [20] Zhang N, Liu S Q, Fu X Z, Xu Y J. J Phys Chem C, 2011, 115: 9136

    21. [21]

      [21] Bahruji H, Bowker M, Davies P R, Kennedy J, Morgan D J. Int J Hydrogen Energy, 2015, 40: 1465

    22. [22]

      [22] Yang J H, Wang D, Han H X, Li C. Acc Chem Res, 2013, 46: 1900

    23. [23]

      [23] Zhang J, Yan S, Fu L, Wang F, Yuan M Q, Luo G X, Xu Q, Wang X, Li C. Chin J Catal (张静, 阎松, 付鹿, 王飞, 原梦琼, 罗根祥, 徐倩, 王翔, 李灿. 催化学报), 2011, 32: 983

    24. [24]

      [24] Li Z, Cong S, Xu Y M. ACS Catal, 2014, 4: 3273

    25. [25]

      [25] Yan J Q, Wu G J, Guan N J, Li L D, Li Z X, Cao X Z. Phys Chem Chem Phys, 2013, 15: 10978

    26. [26]

      [26] Kandiel T A, Feldhoff A, Robben L, Dillert R, Bahnemann D W. Chem Mater, 2010, 22, 2050

    27. [27]

      [27] Tian Y, Tatsuma T. J Am Chem Soc, 2005, 127: 7632

    28. [28]

      [28] Furube A, Du L, Hara K, Katoh R, Tachiya M. J Am Chem Soc, 2007, 129: 14852

    29. [29]

      [29] Fang J, Cao S W, Wang Z, Shahjamali M M, Loo S C J, Barber J, Xue C. Int J Hydrogen Energy, 2012, 37: 17853

    30. [30]

      [30] Michaelson H B. J Appl Phys, 1977, 48: 4729

    31. [31]

      [31] Tan T T Y, Yip C K, Beydoun D, Amal R. Chem Eng J, 2003, 95: 179

    32. [32]

      [32] Wang W N, An W J, Ramalingam B, Mukherjee S, Niedzwiedzki D M, Gangopadhyay S, Biswas P. J Am Chem Soc, 2012, 134: 11276

    33. [33]

      [33] Kominami H, Furusho A, Murakami S Y, Inoue H, Kera Y, Ohtani B. Catal Lett, 2001, 76: 31

  • 加载中
    1. [1]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(1)
  • Abstract views(497)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return