Citation: Xuehua Yu, Zhen Zhao, Yuechang Wei, Jian Liu, Jianmei Li, Aijun Duan, Guiyuan Jiang. Synthesis of K-doped three-dimensionally ordered macroporous Mn0.5Ce0.5Oδ catalysts and their catalytic performance for sootoxidation[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1957-1967. doi: 10.1016/S1872-2067(15)60949-4 shu

Synthesis of K-doped three-dimensionally ordered macroporous Mn0.5Ce0.5Oδ catalysts and their catalytic performance for sootoxidation

  • Corresponding author: Zhen Zhao, 
  • Received Date: 21 June 2015
    Available Online: 2 July 2015

    Fund Project: 国家自然科学基金(21177160, 21303263, 21477164) (21177160, 21303263, 21477164) 北京市新星计划(Z141109001814072) (Z141109001814072) 高等学校博士学科点专项科研基金(20130007120011) (20130007120011) 中国石油大学(北京)科学基金(2462013YJRC13, 2462013BJRC003). (北京)科学基金(2462013YJRC13, 2462013BJRC003)

  • A series of K-doped Mn0.5Ce0.5Oδ (K-MCO) catalysts with three-dimensionally ordered macroporous (3DOM) structure and different K loadings were successfully synthesized using simple methods. These catalysts exhibited well-defined 3DOM nanostructure, which consisted of extensive interconnecting networks of spherical voids. The effects of the calcination temperature and calcination time on the morphological characteristics and crystalline forms of the catalysts were systematically studied. The catalysts showed high catalytic activity for the combustion of soot. 3DOM 20% K-MCO-4h catalyst, in particular, showed the highest catalytic activity of all of the catalysts studied (e.g., T50 = 331 ℃ and SmCO2 = 95.3%). The occurrence of structural and synergistic effects among the K, Mn, and Ce atoms in the catalysts was favorable for enhancing their catalytic activity towards the combustion of diesel soot. Furthermore, the temperatures required for the complete combustion of the soot (<400 ℃) were well within the exhaust temperature range (175-400 ℃), which means that the accumulated soot can be removed under the conditions of the diesel exhaust gas. These catalysts could therefore be used in numerous practical applications because they are easy to synthesize, exhibit high catalytic activity, and can be made from low cost materials.
  • 加载中
    1. [1]

      [1] Fino D, Specchia V. Powder Technol, 2008, 180: 64

    2. [2]

      [2] Twigg M V. Appl Catal B, 2007, 70: 2

    3. [3]

      [3] Heal M R, Kumar P, Harrison R M. Chem Soc Rev, 2012, 41: 6606

    4. [4]

      [4] Neeft J P A, Makkee M, Moulijn J A. Appl Catal B, 1996, 8: 57

    5. [5]

      [5] Bueno-López A. Appl Catal B, 2014, 146: 1

    6. [6]

      [6] Neeft J P A, van Pruissen O P, Makkee M, Moulijn J A. Appl Catal B, 1997, 12: 21

    7. [7]

      [7] Arandiyan H, Dai H X, Deng J G, Liu Y X, Bai B Y, Wang Y, Li X W, Xie S H, Li J H. J Catal, 2013, 307: 327

    8. [8]

      [8] Stein A, Wilson B E, Rudisill S G. Chem Soc Rev, 2013, 42: 2763

    9. [9]

      [9] Xu J F, Liu J, Zhao Z, Xu C M, Zheng J X, Duan A J, Jiang G Y. J Catal, 2011, 282: 1

    10. [10]

      [10] Zhang G Z, Zhao Z, Xu J F, Zheng J X, Liu J, Jiang G Y, Duan A J, He H. Appl Catal B, 2011, 107: 302

    11. [11]

      [11] Guilhaume N, Bassou B, Bergeret G, Bianchi D, Bosselet F, Desmartin-Chomel A, Jouguet B, Mirodatos C. Appl Catal B, 2012, 119-120: 287

    12. [12]

      [12] Van Craenenbroeck J, Andreeva D, Tabakova T, Van Werde K, Mullens J, Verpoort F. J Catal, 2002, 209: 515

    13. [13]

      [13] Zhong F L, Zhong Y J, Xiao Y H, Cai G H, Zheng Y, Wei K M. Chin J Catal (钟富兰, 钟喻娇, 肖益鸿, 蔡国辉, 郑勇, 魏可镁. 催化学报), 2011, 32: 1469

    14. [14]

      [14] Wei Y C, Liu J, Zhao Z, Chen Y S, Xu C M, Duan A J, Jiang G Y, He H. Angew Chem Int Ed, 2011, 50: 2326

    15. [15]

      [15] Wei Y C, Zhao Z, Liu J, Liu S T, Xu C M, Duan A J, Jiang G Y. J Catal, 2014, 317: 62

    16. [16]

      [16] Yu X H, Li J M, Wei Y C, Zhao Z, Liu J, Jin B F, Duan A J, Jiang G Y. Ind Eng Chem Res, 2014, 53: 9653

    17. [17]

      [17] Shi X Y, Yu Y B, Xue L, He H. Chin J Catal (石晓燕, 余运波, 薛莉, 贺泓. 催化学报), 2014, 35: 1504

    18. [18]

      [18] Li W N, Yuan J K, Shen X F, Gomez Mower S, Xu L P, Sithambaram S, Aindow M, Suib S L. Adv Funct Mater, 2006, 16: 1247

    19. [19]

      [19] Tikhomirov K, Krocher O, Elsener M, Wokaun A. Appl Catal B, 2006, 64: 72

    20. [20]

      [20] Sheng Y Q, Zhou Y, Lu H F, Zhang Z K, Chen Y F. Chin J Catal (盛叶琴, 周瑛, 卢晗锋, 张泽凯, 陈银飞. 催化学报), 2013, 34: 567

    21. [21]

      [21] Wu X D, Liu S, Weng D, Lin F, Ran R. J Hazard Mater, 2011, 187: 283

    22. [22]

      [22] Gálvez M E, Ascaso S, Stelmachowski P, Legutko P, Kotarba A, Moliner R, Lázaro M J. Appl Catal B, 2014, 152-153: 88

    23. [23]

      [23] Ogura M, Kimura R, Ushiyama H, Nikaido F, Yamashita K, Okubo T. ChemCatChem, 2014, 6: 479

    24. [24]

      [24] Kimura R, Wakabayashi J, Elangovan S P, Ogura M, Okubo T. J Am Chem Soc, 2008, 130: 12844

    25. [25]

      [25] Zhang Z L, Zhang Y X, Wang Z P, Gao X Y. J Catal, 2010, 271: 12

    26. [26]

      [26] Guo X, Meng M, Dai F F, Li Q, Zhang Z L, Jiang Z, Zhang S, Huang Y Y. Appl Catal B, 2013, 142-143: 278

    27. [27]

      [27] Legutko P, Jakubek T, Kaspera W, Stelmachowski P, Sojka Z, Kotarba A. Catal Commun, 2014, 43: 34

    28. [28]

      [28] Shan W J, Yang L H, Ma N, Yang J L. Chin J Catal (单文娟, 杨利花, 马娜, 杨佳丽. 催化学报), 2012, 33: 970

    29. [29]

      [29] Li Q, Wang X, Xin Y, Zhang Z L, Zhang Y X, Hao C, Meng M, Zheng L R, Zheng L. Sci Rep, 2014, 4: 4725

    30. [30]

      [30] Carrascull A L, Ponzi M I, Ponzi E N. Ind Eng Chem Res, 2003, 42: 692

    31. [31]

      [31] Gómez L E, Boix A V, Miró E E. Catal Today, 2013, 216: 246

    32. [32]

      [32] Delimaris D, Ioannides T. Appl Catal B, 2008, 84: 303

    33. [33]

      [33] Wang H, Liu J, Zhao Z, Wei Y C, Xu C M. Catal Today, 2012, 184: 288

    34. [34]

      [34] Yadav G D, Mewada R K. Chem Eng J, 2013, 221: 500

    35. [35]

      [35] Ma L, Wang D S, Li J H, Bai B Y, Fu L X, Li Y D. Appl Catal B, 2014, 148-149: 36

    36. [36]

      [36] Wang R H, Li J H. Environ Sci Technol, 2010, 44: 4282

    37. [37]

      [37] King'ondu C K, Opembe N, Chen C H, Ngala K, Huang H, Iyer A, Garcés H F, Suib S L. Adv Funct Mater, 2011, 21: 312

    38. [38]

      [38] Ura B, Trawczyński J, Kotarba A, Bieniasz W. Illán-Gómez M J, Bueno-López A, López-Suárez F E. Appl Catal B, 2011, 101: 169

    39. [39]

      [39] Legutko P, Jakubek T, Kaspera W, Stelmachowski P, Sojka Z, Kotarba A. Catal Commun, 2014, 43: 34

  • 加载中
    1. [1]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(0)
  • Abstract views(331)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return