Citation:
	            
		            Oleksiy  V. Khavryuchenko, Volodymyr  D. Khavryuchenko, Dangsheng  Su. Spin catalysts: A quantum trigger for chemical reactions[J]. Chinese Journal of Catalysis,
							;2015, 36(10): 1656-1661.
						
							doi:
								10.1016/S1872-2067(15)60948-2
						
					
				
					
				
	        
- 
	                	Spin catalysis allows restrictions of the spin conservation rule to be overcome, and, moreover, provides a tool for fine control of elementary reactions. Spin-conductive solid catalysts make processes over surfaces strongly correlated and also can trigger the direction of the reaction via external magnetic field application. Activation/deactivation of O2 and non-polar small molecules, homolytic bond cleavage, and coupling of radicals are within the practical scope of spin catalysis.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] Minaev B F, Ågren H. Int J Quantum Chem, 1998, 57: 519
 - 
			
                    [2]
                
			
[2] Buchachenko A L, Berdinsky V L. Chem Rev, 2002, 102: 603
 - 
			
                    [3]
                
			
[3] Buchachenko A L, Berdinsky V L. Russ Chem Rev, 2004, 73: 1033
 - 
			
                    [4]
                
			
[4] Schwarz H. Int J Mass Spectr, 2004, 237: 75
 - 
			
                    [5]
                
			
[5] Schröder D, Schwarz H. Reactivity Concepts for Oxidation Catalysis: Spin and Stoichiometry Problems in Dioxygen Activation. In: Quinkert G, Kisakürek M V Eds. Essays in Contemporary Chemistry: From Molecular Structure towards Biology. New York: Wiley-VCH, 2007. 131
 - 
			
                    [6]
                
			
[6] Salikhov K M, Molin Yu N, Sagdeev R Z, Buchachenko A L. Spin Polarization and Magnetic Effects in Radical Reactions. Budapest: Akademiai Kiado, 1984. 419
 - 
			
                    [7]
                
			
[7] Turro N J, Arora K S. Macromolecules, 1986, 19: 42
 - 
			
                    [8]
                
			
[8] Wang J F, Welsh K M, Waterman K C, Fehiner P, Doubleday C Jr, Turro N J. J Phys Chem, 1988, 92: 3730
 - 
			
                    [9]
                
			
[9] Sakaguchi Y, Hayashi H. Chem Phys, 1992, 162: 119
 - 
			
                    [10]
                
			
[10] Yamaguchi K, Shoji M, Isobe H, Kitagawa Y, Yamada S, Kawakami T, Yamanaka S, Okumura M. Polyhedron, 2013, 66: 228
 - 
			
                    [11]
                
			
[11] Prabhakar R, Siegbahn P E M, Minaev B F, Ågren H. J Phys Chem B, 2004, 108: 13882
 - 
			
                    [12]
                
			
[12] Himo F, Siegbahn P E M. Chem Rev, 2003, 103: 2421
 - 
			
                    [13]
                
			
[13] Minaev B F, Murugan N A, Ågren H. Int J Quantum Chem, 2013, 113: 1847
 - 
			
                    [14]
                
			
[14] Yamanaka S, Saito T, Kanda K, Isobe H, Umena Y, Kawakami K, Shen J R, Kamiya N, Okumura M, Nakamura H, Yamaguchi K. Int J Quantum Chem, 2012, 112: 321
 - 
			
                    [15]
                
			
[15] Stass D V, Woodward J R, Timmel C R, Hore P J, McLauchlan K A. Chem Phys Lett, 2000, 329: 15
 - 
			
                    [16]
                
			
[16] Turro N J. J Org Chem, 2011, 76: 9863
 - 
			
                    [17]
                
			
[17] Terenzi C, Bouguet-Bonnet S, Canet D. J Phys Chem Lett, 2015, 6: 1611
 - 
			
                    [18]
                
			
[18] Mori Y, Sakaguchi Y, Hayashi H. J Phys Chem A, 2002, 106: 4453
 - 
			
                    [19]
                
			
[19] Mi Q, Chernick E T, McCamant D W, Weiss E A, Ratner M A, Wasielewski M R. J Phys Chem A, 2006, 110: 7323
 - 
			
                    [20]
                
			
[20] Cohen A E. J Phys Chem A, 2009, 113: 11084
 - 
			
                    [21]
                
			
[21] Isobe H, Yamanaka S, Kuramitsu S, Yamaguchi K. J Am Chem Soc, 2008, 130: 132
 - 
			
                    [22]
                
			
[22] Maeyama T, Matsui H, Yago T, Wakasa M. J Phys Chem C, 2010, 114: 22190
 - 
			
                    [23]
                
			
[23] Okazaki M, Toriyama K, Oda K, Kasai T. Phys Chem Chem Phys, 2002, 4: 1201
 - 
			
                    [24]
                
			
[24] Okazaki M, Tanimoto Y, Konishi Y, Toriyama K. J Phys Chem, 1996, 100: 9403
 - 
			
                    [25]
                
			
[25] Khavryuchenko O V, Frank B, Trunschke A, Hermann K, Schlögl R. J Phys Chem C, 2013, 117: 6225
 - 
			
                    [26]
                
			
[26] Rodgers C T. Pure Appl Chem, 2009, 81: 19
 - 
			
                    [27]
                
			
[27] Schweitzer C, Schmidt R. Chem Rev, 2003, 103: 1685
 - 
			
                    [28]
                
			
[28] Baik M H, Newcomb M, Friesner R A, Lippard S J. Chem Rev, 2003, 103: 2385
 - 
			
                    [29]
                
			
[29] Cloonan M O. Int J Hydrogen Energy, 2007, 32: 159
 - 
			
                    [30]
                
			
[30] Markofsky S B. Nitro Compounds, Aliphatic. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 2000. 291
 - 
			
                    [31]
                
			
[31] Minaev B F. J Mol Catal A, 2001, 171: 53
 - 
			
                    [32]
                
			
[32] Pietrzyk P, Zasada F, Piskorz W, Kotarba A, Sojka Z. Catal Today, 2007, 119: 219
 - 
			
                    [33]
                
			
[33] Kruczała K, Szczubiałka K, Łańcucki Ł, Zastawny I, Góra-Marek K, Dyrek K, Sojka Z. Spectrochim Acta A, 2008, 69: 1337
 - 
			
                    [34]
                
			
[34] Spier E, Neuenschwander U, Hermans I. Angew Chem Int Edt, 2013, 52: 1581
 - 
			
                    [35]
                
			
[35] Busch M, Ahlberg E, Panas I. Phys Chem Chem Phys, 2011, 13: 15062
 - 
			
                    [36]
                
			
[36] Khavryuchenko O V, Stus N V, Peslherbe G H. Solid State Commun, 2012, 152: 2138
 - 
			
                    [37]
                
			
[37] Khavryuchenko O V, Khavryuchenko V D, Lisnyak V V, Peslherbe G H. Chem Phys Lett, 2011, 513: 261
 - 
			
                    [38]
                
			
[38] Schlögl R. Adv Catal, 2013, 56: 103
 - 
			
                    [39]
                
			
[39] Arrigo R, Schuster M E, Xie Z, Yi Y, Wowsnick G, Sun L L, Hermann K E, Friedrich M, Kast P, Hävecker M, Knop-Gericke A, Schlögl R. ACS Catal, 2015, 5: 2740
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
 - 
				[2]
				
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
 - 
				[3]
				
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
 - 
				[4]
				
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. - 
				[5]
				
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
 - 
				[6]
				
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
 - 
				[7]
				
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
 - 
				[8]
				
Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055
 - 
				[9]
				
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
 - 
				[10]
				
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
 - 
				[11]
				
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
 - 
				[12]
				
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
 - 
				[13]
				
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
 - 
				[14]
				
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
 - 
				[15]
				
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
 - 
				[16]
				
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
 - 
				[17]
				
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
 - 
				[18]
				
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
 - 
				[19]
				
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
 - 
				[20]
				
Linlin Wu , Yonghua Zhou , Zhongbei Li , Liu Deng , Younian Liu , Limiao Chen , Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1)
 - Abstract views(629)
 - HTML views(64)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: