Citation: Yanwei Ren, Jiaxian Lu, Ou Jiang, Xiaofei Cheng, Jun Chen. Amine-grafted on lanthanide metal-organic frameworks: Three solid base catalysts for Knoevenagel condensation reaction[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1949-1956. doi: 10.1016/S1872-2067(15)60945-7 shu

Amine-grafted on lanthanide metal-organic frameworks: Three solid base catalysts for Knoevenagel condensation reaction

  • Corresponding author: Yanwei Ren, 
  • Received Date: 29 May 2015
    Available Online: 3 July 2015

    Fund Project: 国家自然科学基金(21372087). (21372087)

  • A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)0.75(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H2O)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(btc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4 for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.
  • 加载中
    1. [1]

      [1] O'Keeffe M, Yaghi O M. Chem Rev, 2012, 112: 675

    2. [2]

      [2] Li J R, Sculley J, Zhou H C. Chem Rev, 2012, 112: 869

    3. [3]

      [3] Ma L Q, Abney C, Lin W B. Chem Soc Rev, 2009, 38: 1248

    4. [4]

      [4] Cook T R, Zheng Y R, Stang P J. Chem Rev, 2013, 113: 734

    5. [5]

      [5] Cui Y J, Yue Y F, Qian G D, Chen B L. Chem Rev, 2012, 112: 1126

    6. [6]

      [6] Shi D B, Ren Y W, Jiang H F, Cai B W, Lu J X. Inorg Chem, 2012, 51: 6498

    7. [7]

      [7] Liu J W, Chen L F, Cui H, Zhang J Y, Zhang L, Su C Y. Chem Soc Rev, 2014, 43: 6011

    8. [8]

      [8] Sharma M K, Singh P P, Bharadwaj P K. J Mol Catal A, 2011, 342-343: 6

    9. [9]

      [9] Ren Y W, Liang J X, Lu J X, Cai B W, Shi D B, Qi C R, Jiang H F, Chen J, Zheng D. Eur J Inorg Chem, 2011: 4369

    10. [10]

      [10] Cai B W, Ren Y W, Jiang H F, Zheng D, Shi D B, Qian Y Y, Hu H X. Inorg Chem Commun, 2012, 15: 159

    11. [11]

      [11] Cai B W, Ren Y W, Jiang H F, Zheng D, Shi D B, Qian Y Y, Chen J. CrystEngComm, 2012, 14: 5285

    12. [12]

      [12] Shi D B, Ren Y W, Jiang H F, Cai B W, Lu J X. Inorg Chem Commun, 2012, 24: 114

    13. [13]

      [13] Gustafsson M, Bartoszewicz A, Martín-Matute B, Sun J L, Grins J, Zhao T, Li Z Y, Zhu G S, Zou X D. Chem Mater, 2010, 22: 3316

    14. [14]

      [14] Zhang J, Huang J, Yang J, Chen H J. Inorg Chem Commun, 2012, 17: 163

    15. [15]

      [15] Lin Z J, Yang Z, Liu T F, Huang Y B, Cao R. Inorg Chem, 2012, 51: 1813

    16. [16]

      [16] Li Y X, Xue M, Guo L J, Huang L, Chen S R, Qiu S L. Inorg Chem Commun, 2013, 28: 25

    17. [17]

      [17] Wang Z Q, Cohen S M. Chem Soc Rev, 2009, 38: 1315

    18. [18]

      [18] Cohen S M. Chem Rev, 2012, 112: 970

    19. [19]

      [19] Corma A, García H, Llabrés i Xamena F X. Chem Rev, 2010, 110: 4606

    20. [20]

      [20] Wang Z Q, Cohen S M. J Am Chem Soc, 2007, 129: 12368

    21. [21]

      [21] Costa J S, Gamez P, Black C A, Roubeau O, Teat S J, Reedijk J. Eur J Inorg Chem, 2008: 1551

    22. [22]

      [22] Ahnfeldt T, Gunzelmann D, Loiseau T, Hirsemann D, Senker J, Férey G, Stock N. Inorg Chem, 2009, 48: 3057

    23. [23]

      [23] Garibay S J, Wang Z Q, Cohen S M. Inorg Chem, 2010, 49: 8086

    24. [24]

      [24] Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew Chem Int Ed, 2008, 47: 4144

    25. [25]

      [25] Huang Y B, Zheng Z L, Liu T F, Lü J, Lin Z J, Li H F, Cao R. Catal Commun, 2011, 14: 27

    26. [26]

      [26] Tanabe K K, Wang Z Q, Cohen S M. J Am Chem Soc, 2008, 130: 8508

    27. [27]

      [27] Demessence A, D'Alessandro D M, Foo M L, Long J R. J Am Chem Soc, 2009, 131: 8784

    28. [28]

      [28] Canivet J, Aguado S, Daniel C, Farrusseng D. ChemCatChem, 2011, 3: 675

    29. [29]

      [29] Vermoortele F, Ameloot R, Vimont A, Serre C, De Vos D. Chem Commun, 2011, 47: 1521

    30. [30]

      [30] Banerjee M, Das S, Yoon M, Choi H J, Hyun M H, Park S M, Seo G, Kim K. J Am Chem Soc, 2009, 131: 7524

    31. [31]

      [31] Jiang H L, Tsumori N, Xu Q. Inorg Chem, 2010, 49: 10001

    32. [32]

      [32] Angeletti E, Canepa C, Martinetti G, Venturello P. Tetrahedron Lett, 1988, 29: 2261

    33. [33]

      [33] Parida K M, Rath D. J Mol Catal A, 2009, 310: 93

    34. [34]

      [34] Tran U P N, Le K K A, Phan N T S. ACS Catal, 2011, 1: 120

    35. [35]

      [35] Gascon J, Aktay U, Hernandez-Alonso M D, Van Klink G P M, Kapteijn F. J Catal, 2009, 261: 75

    36. [36]

      [36] Tan Y, Fu Z Y, Zhang J. Inorg Chem Commun, 2011, 14: 1966

    37. [37]

      [37] Nguyen L T L, Le K K A, Truong H X, Phan N T S. Catal Sci Technol, 2012, 2: 521

    38. [38]

      [38] Hartmann M, Fischer M. Microporous Mesoporous Mater, 2012, 164: 38

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(2)
  • Abstract views(543)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return