Citation: M. Ravi Chandra, T. Siva Rao, B. Sreedhar. Recyclable Sn-TiO2/polythiophene nanohybrid material for degradation of organic pollutants under visible-light irradiation[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1668-1678. doi: 10.1016/S1872-2067(15)60944-5 shu

Recyclable Sn-TiO2/polythiophene nanohybrid material for degradation of organic pollutants under visible-light irradiation

  • Corresponding author: T. Siva Rao, 
  • Received Date: 23 February 2015
    Available Online: 22 June 2015

  • A Sn-doped TiO2/polythiophene nanohybrid (SPNH) was synthesized by a modified sol-gel process at low temperature. The prepared catalyst was characterized by X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis) diffuse reflectance spectrophotometry (UV-DRS), and Brunauer-Emmett-Teller surface area analysis. The XRD results confirmed that polythiophene (PTh) had no effect on the crystal structure of TiO2. IR spectra and UV-DRS indicated that an interaction occurs between the interface of PTh and metal oxide in SPNH, and doped metal oxide nanoparticles were incorporated into PTh to form a core-shell structure. XPS analysis confirmed the presence of Sn4+ and respective elements of PTh and TiO2 in SPNH. SPNH displayed higher adsorption capacities for pollutants than Sn-doped TiO2 nanoparticles (STN). In addition, SPNH exhibited higher photocatalytic activity and stability than STN towards the degradation of organic pollutants nitrobenzene (NB) and malachite green (MG) under visible-light irradiation. Because of the presence of PTh on STN, there was an increase in the adsorption of NB (24%) and MG (21%) on the surface of SPNH, which led to a higher photocatalytic yield. The recyclability of the photocatalytic activity for the photocatalyst was examined by about five runs and not found any depletion or degradation of PTh under visible light irradiation. The high photocatalytic activity of SPNH makes it an attractive candidate as a photocatalyst for industrial water purification.
  • 加载中
    1. [1]

      [1] Linsebigler A L, Lu G Q, Yates J T. Chem Rev, 1995, 95: 735

    2. [2]

      [2] Lifshitz E, Porteanu H, Glozman A, Weller H, Pflughoefft M, Echymu1ller A. J Phys Chem B, 1999, 103: 6870

    3. [3]

      [3] Zou B S, Volkov V V, Wang Z L. Chem Mater, 1999, 11: 3037

    4. [4]

      [4] O'Regan B, Gratzel M. Nature, 1991, 353: 737

    5. [5]

      [5] Yang H M, Zhang K, Shi R R, Li X W, Dong X D, Yu Y M. J Alloys Compd, 2006, 413: 302

    6. [6]

      [6] Li Y X, Wlodarski W, Galatsis K, Moslih S H, Cole J, Russo S, Rockelmann N. Sens Actuat B, 2002, 83: 160

    7. [7]

      [7] Thompson T L, Yates J T. Chem Rev, 2006, 106: 4428

    8. [8]

      [8] Liang H C, Li X Z. Appl Catal B, 2009, 86: 8

    9. [9]

      [9] Kubacka A, Bachiller-Baeza B, Colon G, Fernandez-Garcia M. Appl Catal B, 2010, 93: 274

    10. [10]

      [10] Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H. Appl Phys Lett, 2009, 95: 093108

    11. [11]

      [11] Sui R H, Young J L, Berlinguette C P. J Mater Chem, 2010, 20: 498

    12. [12]

      [12] Lu S L, Zeng L, Wu T, Ren B F, Niu J F, Liu H Y, Zhao X L, Mao J W. Solar Energy, 2011, 85: 1967

    13. [13]

      [13] Zhu Y F, Xu S B, Jiang L, Pan K L, Dan Y. React Funct Polym, 2008, 68: 1492

    14. [14]

      [14] Song Y Q, Zhang J L, Yang H G, Xu S B, Jiang L, Dan Y. Appl Surf Sci, 2014, 292: 978

    15. [15]

      [15] Xu S B, Jiang L, Yang H G, Song Y Q, Dan Y. Chin J Catal (徐守斌, 江龙, 杨海刚, 宋远卿, 淡宜. 催化学报), 2011, 32: 536

    16. [16]

      [16] Qiao Y, Bao S J, Li C M, Cui X Q, Lu Z S, Guo J. ACS Nano, 2008, 2: 113

    17. [17]

      [17] Wang Y, Jia W Z, Strout T, Ding Y, Lei Y. Sensors, 2009, 9: 6752

    18. [18]

      [18] De Boer B, Facchetti A. Polym Rev, 2008, 48: 423

    19. [19]

      [19] Berlin A, Vercelli B, Zotti G. Polym Rev, 2008, 48: 493

    20. [20]

      [20] Liang H, Li X, Appl Catal B, 2009, 86: 8

    21. [21]

      [21] Wang F, Min S X. Chin Chem Lett, 2007, 18: 1273

    22. [22]

      [22] Wang D S, Wang Y H, Li X Y, Luo Q Z, An J, Yue J X. Catal Commun, 2008, 9: 1162

    23. [23]

      [23] Wen C, Hasegawa K, Kanbara T, Kagaya S, Yamamoto T. J Photochem Photobiol A, 2000, 133: 59

    24. [24]

      [24] Oksuz A U, Mandache S, Oksuz L, Hershkowitz N. Ind Eng Chem Res, 2013, 52: 6610

    25. [25]

      [25] Motaung D E, Malgas G F, Arendse C J, Mavundla S E, Oliphant C J, Knoesen D. Solar Energy Mater Solar Cells, 2009, 93: 1674

    26. [26]

      [26] Chatterjee A, Ebina T, Iwasaki T, Mizukami F. J Chem Phys, 2003, 118: 10212

    27. [27]

      [27] Srivastava S, Sinha R, Roy D. Aquatic Toxicol, 2004, 66: 319

    28. [28]

      [28] Ravi Chandra M, Siva Rao T, Pammi S V N, Sreedhar B. Mater Sci Semicond Process, 2015, 30: 672

    29. [29]

      [29] Wu J C S, Chen C H. J Photochem Photobiol A, 2004, 163: 509

    30. [30]

      [30] Czili H, Horvath A. Appl Catal B, 2008, 81: 295

    31. [31]

      [31] Oksuz A U, Manolache S, Oksuz L, Hershkowitz N. Ind Eng Chem Res, 2013, 52: 6610

    32. [32]

      [32] Gao X D, Chorover J. J Colloid Interf Sci, 2010, 348: 167

    33. [33]

      [33] Li X Z, Li F B, Yang C L, Ge W K. J Photochem Photobiol A, 2001, 141: 209

    34. [34]

      [34] Duan Y D, Fu N Q, Liu Q P, Fang Y Y, Zhou X W, Zhang J B, Lin Y. J Phys Chem C, 2012, 116: 8888

    35. [35]

      [35] Liang H C, Li X Z. Appl Catal B, 2009, 86: 8

    36. [36]

      [36] Zhang S J, Jiang H, Li M J, Yu H Q, Yin H, Li Q R. Environ Sci Technol, 2007, 41: 1977

    37. [37]

      [37] Ju Y M, Yang S G, Ding Y C, Sun C, Zhang A Q, Wang L H. J Phys Chem A, 2008, 112: 11172

    38. [38]

      [38] Liu G, Chen Z G, Dong C L, Zhao Y N, Li F, Lu G Q, Cheng H M. J Phys Chem B, 2006, 110: 20823

    39. [39]

      [39] Salzner U, Lagowski J B, Pickup P G, Poirier R A. Synth Metal, 1998, 96: 177

    40. [40]

      [40] Gao X D, Chorover J. J Colloid Interf Sci, 2010, 348: 167

    41. [41]

      [41] Li W, Bai Y, Liu C, Yang Z H, Feng X, Lu X H, van der Laak N K, Chan K Y. Environ Sci Technol, 2009, 43: 5423

    42. [42]

      [42] Yu C L, Zhou W Q, Yu J C, Liu H, Wei L F. Chin J Catal (余长林, 周晚琴, 余济美, 刘鸿, 魏龙福. 催化学报), 2014, 35: 1609

    43. [43]

      [43] Peng Z, Yu J, Mietek J. Adv Mater, 2014, 26: 4920

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(316)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return