Citation: Marcela Kralova, Irina Levchuk, Vit Kasparek, Mika Sillanpaa, Jaroslav Cihlar. Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1679-1685. doi: 10.1016/S1872-2067(15)60943-3 shu

Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor

  • Corresponding author: Marcela Kralova, 
  • Received Date: 28 February 2015
    Available Online: 17 June 2015

  • Heterogeneous photocatalysis is a very effective method for the decomposition of a whole range of water pollutants. In this work, the influence of synthesis conditions on the physical properties and photocatalytic activity of lanthanide-doped titanium dioxide photocatalysts was evaluated. Titanium dioxide was prepared via sol-gel synthesis followed by a solid state reaction under different conditions, including different temperatures (450, 550, and 650 ℃) and reaction times (4, 8, and 12 h). The crystalline phase of the products was determined to be solely anatase using X-ray diffraction, and this result was confirmed by Raman spectroscopy. The structure, as well as particle size, of the samples was examined using scanning electron microscopy, and their specific surface area was calculated using Brunauer-Emmett-Teller analysis. The band gap energy of the samples was examined using ultraviolet-visible spectroscopy from diffuse reflectance measurements. Doping with lanthanide species, dysprosium and praseodymium, caused the absorption edge to shift towards higher wavelengths and enhanced photocatalytic activity in comparison with pure titania. The photocatalytic activity of the samples was studied in terms of the degradation of the commonly used herbicide metazachlor. The decomposition was carried under UV light and the decrease in metazachlor concentration was measured using high performance liquid chromatography. The best performance was obtained for samples treated at 550 ℃ for 8 h during the solid state reaction step.
  • 加载中
    1. [1]

      [1] Musil B. http://www.apic-ak.cz/data_ak/11/v/UcinneLatky Spotreba2010. pdf

    2. [2]

      [2] Sanches S, Penetra A, Rodrigues A, Cardoso V V, Ferreira E, Benoliel M J, Barreto Crespo M T, Crespo J G, Pereira V J. Separat Purificat Technol, 2013, 115: 73

    3. [3]

      [3] FAO specifications and evaluations for plant protection products: Matazachlor. Food and Agriculture Organization of the United Nations, 1999. http://www.fao.org/fileadmin/templates/agphome/ documents/Pests_Pesticides/Specs/metazach.pdf

    4. [4]

      [4] Schug T T, Janesick A, Blumberg B, Heindel J J. J Ster Biochem Mol Biol, 2011, 127: 204

    5. [5]

      [5] Deblonde T, Hertemann P. Pub Health, 2013, 127: 312

    6. [6]

      [6] Michael I, Rizzo L, McArdell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Water Res, 2013, 47: 957

    7. [7]

      [7] Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barcelo D. Sci Total Environ, 2012, 430: 109

    8. [8]

      [8] Cruz-Morato C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barcelo D, Vincent T, Sarra M, Marco-Urrea E. Sci Total Environ, 2014, 493: 365

    9. [9]

      [9] Silva C P, Otero M, Esteves V. Environ Pollut, 2012, 165: 38

    10. [10]

      [10] Hinkova A, Henke S, Bubnik Z, Pour V, Salova A, Slukova M, Sarka E. Innov Food Sci Emerg Technol, 2015, 27: 129

    11. [11]

      [11] Malato S, Fernandez-Ibanez P, Maldonado M I, Blanco J, Gernjak W. Catal Today, 2009, 147: 1

    12. [12]

      [12] Yu J G, Xiang Q J, Zhou M H. Appl Catal B, 2009, 90: 595

    13. [13]

      [13] Chiou C H, Juang R S. J Hazard Mater, 2007, 149: 1

    14. [14]

      [14] Reszczynska J, Esteban D A, Gazda M, Zaleska A. Physicochem Probl Miner Process, 2014, 50: 515

    15. [15]

      [15] Liang C H, Liu C S, Li F B, Wu F. Chem Eng J, 2009, 147: 219

    16. [16]

      [16] Huang F P, Wang S, Zhang S, Fan Y G, Li C X, Wang C, Liu C. Bull Korean Chem Soc, 2014, 35: 2512

    17. [17]

      [17] Shi L, Cao L X, Gao R J, Zhao Y L, Zhang H B, Xia C H. J Alloys Compd, 2014, 617: 756

    18. [18]

      [18] Shi J W, Zheng J T, Wu P. J Hazard Mater, 2009, 161: 416

    19. [19]

      [19] Han F, Kambala V S R, Srinivasan M, Rajarathnam D, Naidu R. Appl Catal A, 2009, 359: 25

    20. [20]

      [20] Shi H X, Zhang T Y, Wang H L. J Rare Earth, 2011, 29: 746

    21. [21]

      [21] Yang L, Kruse B. J Opt Soc Am A, 2004, 21: 1933

    22. [22]

      [22] Nishanthi S T, Raja D H, Subramanian E, Padiyan D P. Electrochim Acta, 2013, 89: 239

    23. [23]

      [23] Stengl V, Bakardjieva S, Mufara N. Mater Chem Phys, 2009, 114: 217

    24. [24]

      [24] Vranjes M, Saponjic Z V, Zivkovic L S, Despotovic V N, Sojic D V, Abramovic B F, Comor M I. Appl Catal B, 2014, 160-161: 589

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    11. [11]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    12. [12]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(0)
  • Abstract views(274)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return