Citation: Longxing Hu, Fan Yang, Lianpei Zou, Hang Yuan, Xing Hu. CoFe/SBA-15 catalyst coupled with peroxymonosulfate for heterogeneous catalytic degradation of rhodamine B in water[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1785-1797. doi: 10.1016/S1872-2067(15)60939-1 shu

CoFe/SBA-15 catalyst coupled with peroxymonosulfate for heterogeneous catalytic degradation of rhodamine B in water

  • Corresponding author: Longxing Hu, 
  • Received Date: 18 May 2015
    Available Online: 17 June 2015

    Fund Project: 大学创新研究团队项目(IRT 13078). (IRT 13078)

  • CoFe/SBA-15 catalysts were prepared by simultaneous incipient wetness impregnation using Co(NO3)2·6H2O and Fe(NO3)3·9H2O as the precursors and SBA-15 as the support. The catalysts were used to activate generation of sulfate radicals from peroxymonosulfate (PMS) for rhodamine B (RhB) dye degradation in aqueous solutions. The catalyst was characterized using X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy and energy-dispersive X-ray spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The effects of the Co and Fe loadings and calcination temperature on the catalytic performance, catalyst reusability, and kinetics and mechanism of catalytic oxidative degradation of RhB in the presence of CoFe/SBA-15 and PMS were investigated. The results show that the predominant Co-Fe oxide loaded on the support was the composite CoFe2O4, which provided the active catalytic sites, and was present in the SBA-15 matrix. The surface area, pore volume, and mean pore diameter of 10Co9.5Fe/SBA-15-700 were 506.1 m2/g, 0.669 cm3/g, and 7.4 nm, respectively, lower than those of SBA-15. 10Co9.5Fe/SBA-15-700 consisted of rod-like aggregates with diameters greater than 0.25 μm. It had a magnetic intensity of 8.3 emu/g; therefore, magnetic separation was feasible. 10Co9.5Fe/SBA-15-700 showed good catalytic activity and stability, with a RhB degradation rate higher than 96% and Co leaching lower than 32.4 μg/L. The catalytic oxidative degradation of RhB in the presence of FeCo/SBA-15 and PMS obeyed first-order kinetics, and the degradation rate increased with increasing CoFe/SBA-15 and PMS dosages and with decreasing initial reactant concentrations. Quenching tests showed that sulfate radicals played a dominant role in RhB catalysis. CoFe/SBA-15 maintained high catalytic activity and good stability during 10 recycling runs, with a RhB degradation rate greater than 84%, Co and Fe leaching for each run lower than 72.1 and 35 μg/L, respectively. CoFe/SBA-15 is an efficient catalyst for PMS oxidation, and has potential applications in the removal of refractory organics such as RhB in water.
  • 加载中
    1. [1]

      [1] Malato S, Blanco J, Richter C, Braun B, Maldonado M I. Appl Catal B, 1998, 17: 347

    2. [2]

      [2] Chamarro E, Marco A, Esplugas S. Water Res, 2001, 35: 1047

    3. [3]

      [3] Anipsitakis G P, Dionysiou D D. Environ Sci Technol, 2003, 37: 4790

    4. [4]

      [4] Cheng M M, Ma W H, Li J, Huang Y P, Zhao J C, Wen Y X, Xu Y M. Environ Sci Technol, 2004, 38: 1569

    5. [5]

      [5] Chen X Y, Chen J W, Qiao X L, Wang D G, Cai X Y. Appl Catal B, 2008, 80: 116

    6. [6]

      [6] Neta P, Huie R E, Ross A B. J Phys Chem Ref Data, 1988, 17: 1027

    7. [7]

      [7] Anipsitakis G P, Dionysiou D D. Environ Sci Techol, 2004, 38: 3705

    8. [8]

      [8] Anipsitakis G P, Stathatos E, Dionysiou D D. J Phys Chem B, 2005, 109: 13052

    9. [9]

      [9] Chan K H, Chu W. Water Res, 2009, 43: 2513

    10. [10]

      [10] Yang Q J, Choi H, Al-Abed S R, Dionysiou D D. Appl Catal B, 2009, 88: 462

    11. [11]

      [11] Ding Y B, Zhu L H, Huang A Z, Zhao X R, Zhang X Y, Tang H Q. Catal Sci Technol, 2012, 2: 1977

    12. [12]

      [12] Su S N, Guo W L, Leng Y Q, Yi C L, Ma Z N. J Hazard Mater, 2013, 244-245: 736

    13. [13]

      [13] Yang Q J, Choi H, Dionysiou D D. Appl Catal B, 2007, 74: 170

    14. [14]

      [14] Yang Q J, Choi H, Chen Y J, Dionysiou D D. Appl Catal B, 2008, 77: 300

    15. [15]

      [15] Zhang W, Tay H L, Lim S S, Wang Y S, Zhong Z Y, Xu R. Appl Catal B, 2010, 95: 93

    16. [16]

      [16] Shukla P, Sun H Q, Wang S B, Ang H M, Tadé M O. Sep Purif Technol, 2011, 77: 230

    17. [17]

      [17] Liang H W, Ting Y Y, Sun H Q, Ang H M, Tadé M O. J Colloid Interf Sci, 2012, 372: 58

    18. [18]

      [18] Zhu Y Q, Chen S, Quan X, Zhang Y B. RSC Adv, 2013, 3: 520

    19. [19]

      [19] Shukla P R, Wang S B, Sun H Q, Ang H M, Tadé M. Appl Catal B, 2010, 100: 529

    20. [20]

      [20] Hardjono Y, Sun H Q, Tian H Y, Buckley C E, Wang S B. Chem Eng J, 2011, 174: 376

    21. [21]

      [21] Sun H Q, Tian H Y, Hardjono Y, Buckley C E, Wang S B. Catal Toady, 2012, 186: 63

    22. [22]

      [22] Yao Y J, Yang Z H, Zhang D W, Peng W C, Sun H Q, Wang S B. Ind Eng Chem Res, 2012, 51: 6044

    23. [23]

      [23] Shi P H, Su R J, Wan F Z, Zhu M C, Li D X, Xu S H. Appl Catal B, 2012, 123-124: 265

    24. [24]

      [24] Shi P H, Su R J, Zhu S B, Zhu M C, Li D X, Xu S H. J Hazard Mater, 2012, 229-230: 331

    25. [25]

      [25] Shukla P, Wang S B, Singh K, Ang H M, Tadé M O. Appl Catal B, 2010, 99: 163

    26. [26]

      [26] Chu W, Choy W K, Kwan C Y. J Agr Food Chem, 2007, 55: 5708

    27. [27]

      [27] Saputra E, Muhammad S, Sun H Q, Ang H M, Tadé M O, Wang S B. Catal Toady, 2012, 190: 68

    28. [28]

      [28] Hu L X, Yang X P, Dang S T. Appl Catal B, 2011, 102: 19

    29. [29]

      [29] Shukla P, Sun H Q, Wang S B, Ang H M, Tadé M O. Catal Toady, 2011, 175: 380

    30. [30]

      [30] Hu L X, Yang F, Lu W C, Hao Y, Yuan H. Appl Catal B, 2013, 134-135: 7

    31. [31]

      [31] Liang H W, Sun H Q, Patel A, Shukla P, Zhu Z H, Wang S B. Appl Catal B, 2012, 127: 330

    32. [32]

      [32] Qi F, Chu W, Xu B B. Appl Catal B, 2013, 134-135: 324

    33. [33]

      [33] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. J Am Chem Soc, 1998, 120: 6024

    34. [34]

      [34] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J Am Chem Soc, 2000, 122: 10712

    35. [35]

      [35] Wang Y R, Chu W. Ind Eng Chem Res, 2011, 50: 8734

    36. [36]

      [36] Martí nez-de la Cruz A, García Pé rez U M. Mater Res Bull, 2010, 45: 135

    37. [37]

      [37] Hou M F, Liao L, Zhang W D, Tang X Y, Wan H F, Yin G C. Chemosphere, 2011, 83: 1279

    38. [38]

      [38] Merouani S, Hamdaoui O, Saoudi F, Chiha M. Chem Eng J, 2010, 158: 550

    39. [39]

      [39] Bai C P, Xiong X F, Gong W Q, Feng D X, Xian M, Ge Z X, Xu N. Desalination, 2011, 278: 84

    40. [40]

      [40] Du L, Wu J, Hu C W, Electrochim Acta, 2012, 68: 69

    41. [41]

      [41] Marler B, Oberhagemann U, Vortmann S, Gies H. Microporous Mater, 1996, 6: 375

    42. [42]

      [42] Kim S J, Lee S W, An S Y, Kim C S. J Magn Magn Mater, 2000, 215-216: 210

    43. [43]

      [43] Melero J A, Calleja G, Martínez F, Molina R, Pariente M I. Chem Eng J, 2007, 131: 245

    44. [44]

      [44] Liang H W, Sun H Q, Patel A, Shukla P, Zhu Z H, Wang S B. Appl Catal B, 2012, 127: 330

    45. [45]

      [45] Ramirez J H, Maldonado-Hódar F J, Pérez-Cadenas A F, Moreno-Castilla C, Costa C A, Madeira L M. Appl Catal B, 2007, 75: 312

    46. [46]

      [46] Anipsitakis G P, Dionysiou D D, Gonzalez M A. Environ Sci Technol, 2006, 40: 1000

    47. [47]

      [47] Wu T X, Liu G M, Zhao J C, Hidaka H, Serpone N. J Phys Chem B, 1998, 102: 5845

    48. [48]

      [48] He Z, Yang S G, Ju Y M, Sun C. J Environ Sci, 2009, 21: 268

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    3. [3]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(0)
  • Abstract views(598)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return