Citation:
Longxing Hu, Fan Yang, Lianpei Zou, Hang Yuan, Xing Hu. CoFe/SBA-15 catalyst coupled with peroxymonosulfate for heterogeneous catalytic degradation of rhodamine B in water[J]. Chinese Journal of Catalysis,
;2015, 36(10): 1785-1797.
doi:
10.1016/S1872-2067(15)60939-1
-
CoFe/SBA-15 catalysts were prepared by simultaneous incipient wetness impregnation using Co(NO3)2·6H2O and Fe(NO3)3·9H2O as the precursors and SBA-15 as the support. The catalysts were used to activate generation of sulfate radicals from peroxymonosulfate (PMS) for rhodamine B (RhB) dye degradation in aqueous solutions. The catalyst was characterized using X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy and energy-dispersive X-ray spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The effects of the Co and Fe loadings and calcination temperature on the catalytic performance, catalyst reusability, and kinetics and mechanism of catalytic oxidative degradation of RhB in the presence of CoFe/SBA-15 and PMS were investigated. The results show that the predominant Co-Fe oxide loaded on the support was the composite CoFe2O4, which provided the active catalytic sites, and was present in the SBA-15 matrix. The surface area, pore volume, and mean pore diameter of 10Co9.5Fe/SBA-15-700 were 506.1 m2/g, 0.669 cm3/g, and 7.4 nm, respectively, lower than those of SBA-15. 10Co9.5Fe/SBA-15-700 consisted of rod-like aggregates with diameters greater than 0.25 μm. It had a magnetic intensity of 8.3 emu/g; therefore, magnetic separation was feasible. 10Co9.5Fe/SBA-15-700 showed good catalytic activity and stability, with a RhB degradation rate higher than 96% and Co leaching lower than 32.4 μg/L. The catalytic oxidative degradation of RhB in the presence of FeCo/SBA-15 and PMS obeyed first-order kinetics, and the degradation rate increased with increasing CoFe/SBA-15 and PMS dosages and with decreasing initial reactant concentrations. Quenching tests showed that sulfate radicals played a dominant role in RhB catalysis. CoFe/SBA-15 maintained high catalytic activity and good stability during 10 recycling runs, with a RhB degradation rate greater than 84%, Co and Fe leaching for each run lower than 72.1 and 35 μg/L, respectively. CoFe/SBA-15 is an efficient catalyst for PMS oxidation, and has potential applications in the removal of refractory organics such as RhB in water.
-
-
-
[1]
[1] Malato S, Blanco J, Richter C, Braun B, Maldonado M I. Appl Catal B, 1998, 17: 347
-
[2]
[2] Chamarro E, Marco A, Esplugas S. Water Res, 2001, 35: 1047
-
[3]
[3] Anipsitakis G P, Dionysiou D D. Environ Sci Technol, 2003, 37: 4790
-
[4]
[4] Cheng M M, Ma W H, Li J, Huang Y P, Zhao J C, Wen Y X, Xu Y M. Environ Sci Technol, 2004, 38: 1569
-
[5]
[5] Chen X Y, Chen J W, Qiao X L, Wang D G, Cai X Y. Appl Catal B, 2008, 80: 116
-
[6]
[6] Neta P, Huie R E, Ross A B. J Phys Chem Ref Data, 1988, 17: 1027
-
[7]
[7] Anipsitakis G P, Dionysiou D D. Environ Sci Techol, 2004, 38: 3705
-
[8]
[8] Anipsitakis G P, Stathatos E, Dionysiou D D. J Phys Chem B, 2005, 109: 13052
-
[9]
[9] Chan K H, Chu W. Water Res, 2009, 43: 2513
-
[10]
[10] Yang Q J, Choi H, Al-Abed S R, Dionysiou D D. Appl Catal B, 2009, 88: 462
-
[11]
[11] Ding Y B, Zhu L H, Huang A Z, Zhao X R, Zhang X Y, Tang H Q. Catal Sci Technol, 2012, 2: 1977
-
[12]
[12] Su S N, Guo W L, Leng Y Q, Yi C L, Ma Z N. J Hazard Mater, 2013, 244-245: 736
-
[13]
[13] Yang Q J, Choi H, Dionysiou D D. Appl Catal B, 2007, 74: 170
-
[14]
[14] Yang Q J, Choi H, Chen Y J, Dionysiou D D. Appl Catal B, 2008, 77: 300
-
[15]
[15] Zhang W, Tay H L, Lim S S, Wang Y S, Zhong Z Y, Xu R. Appl Catal B, 2010, 95: 93
-
[16]
[16] Shukla P, Sun H Q, Wang S B, Ang H M, Tadé M O. Sep Purif Technol, 2011, 77: 230
-
[17]
[17] Liang H W, Ting Y Y, Sun H Q, Ang H M, Tadé M O. J Colloid Interf Sci, 2012, 372: 58
-
[18]
[18] Zhu Y Q, Chen S, Quan X, Zhang Y B. RSC Adv, 2013, 3: 520
-
[19]
[19] Shukla P R, Wang S B, Sun H Q, Ang H M, Tadé M. Appl Catal B, 2010, 100: 529
-
[20]
[20] Hardjono Y, Sun H Q, Tian H Y, Buckley C E, Wang S B. Chem Eng J, 2011, 174: 376
-
[21]
[21] Sun H Q, Tian H Y, Hardjono Y, Buckley C E, Wang S B. Catal Toady, 2012, 186: 63
-
[22]
[22] Yao Y J, Yang Z H, Zhang D W, Peng W C, Sun H Q, Wang S B. Ind Eng Chem Res, 2012, 51: 6044
-
[23]
[23] Shi P H, Su R J, Wan F Z, Zhu M C, Li D X, Xu S H. Appl Catal B, 2012, 123-124: 265
-
[24]
[24] Shi P H, Su R J, Zhu S B, Zhu M C, Li D X, Xu S H. J Hazard Mater, 2012, 229-230: 331
-
[25]
[25] Shukla P, Wang S B, Singh K, Ang H M, Tadé M O. Appl Catal B, 2010, 99: 163
-
[26]
[26] Chu W, Choy W K, Kwan C Y. J Agr Food Chem, 2007, 55: 5708
-
[27]
[27] Saputra E, Muhammad S, Sun H Q, Ang H M, Tadé M O, Wang S B. Catal Toady, 2012, 190: 68
-
[28]
[28] Hu L X, Yang X P, Dang S T. Appl Catal B, 2011, 102: 19
-
[29]
[29] Shukla P, Sun H Q, Wang S B, Ang H M, Tadé M O. Catal Toady, 2011, 175: 380
-
[30]
[30] Hu L X, Yang F, Lu W C, Hao Y, Yuan H. Appl Catal B, 2013, 134-135: 7
-
[31]
[31] Liang H W, Sun H Q, Patel A, Shukla P, Zhu Z H, Wang S B. Appl Catal B, 2012, 127: 330
-
[32]
[32] Qi F, Chu W, Xu B B. Appl Catal B, 2013, 134-135: 324
-
[33]
[33] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. J Am Chem Soc, 1998, 120: 6024
-
[34]
[34] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J Am Chem Soc, 2000, 122: 10712
-
[35]
[35] Wang Y R, Chu W. Ind Eng Chem Res, 2011, 50: 8734
-
[36]
[36] Martí nez-de la Cruz A, García Pé rez U M. Mater Res Bull, 2010, 45: 135
-
[37]
[37] Hou M F, Liao L, Zhang W D, Tang X Y, Wan H F, Yin G C. Chemosphere, 2011, 83: 1279
-
[38]
[38] Merouani S, Hamdaoui O, Saoudi F, Chiha M. Chem Eng J, 2010, 158: 550
-
[39]
[39] Bai C P, Xiong X F, Gong W Q, Feng D X, Xian M, Ge Z X, Xu N. Desalination, 2011, 278: 84
-
[40]
[40] Du L, Wu J, Hu C W, Electrochim Acta, 2012, 68: 69
-
[41]
[41] Marler B, Oberhagemann U, Vortmann S, Gies H. Microporous Mater, 1996, 6: 375
-
[42]
[42] Kim S J, Lee S W, An S Y, Kim C S. J Magn Magn Mater, 2000, 215-216: 210
-
[43]
[43] Melero J A, Calleja G, Martínez F, Molina R, Pariente M I. Chem Eng J, 2007, 131: 245
-
[44]
[44] Liang H W, Sun H Q, Patel A, Shukla P, Zhu Z H, Wang S B. Appl Catal B, 2012, 127: 330
-
[45]
[45] Ramirez J H, Maldonado-Hódar F J, Pérez-Cadenas A F, Moreno-Castilla C, Costa C A, Madeira L M. Appl Catal B, 2007, 75: 312
-
[46]
[46] Anipsitakis G P, Dionysiou D D, Gonzalez M A. Environ Sci Technol, 2006, 40: 1000
-
[47]
[47] Wu T X, Liu G M, Zhao J C, Hidaka H, Serpone N. J Phys Chem B, 1998, 102: 5845
-
[48]
[48] He Z, Yang S G, Ju Y M, Sun C. J Environ Sci, 2009, 21: 268
-
[1]
-
-
-
[1]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[2]
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
-
[3]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[4]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[5]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[6]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[7]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[8]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[9]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[10]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[11]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[12]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[13]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[14]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[15]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[16]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[17]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[18]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[19]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[20]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(598)
- HTML views(95)