Citation:
Mahesh M. Nair, Freddy Kleitz, Serge Kaliaguine. Pore structure effects on the kinetics of methanol oxidation over nanocast mesoporous perovskites[J]. Chinese Journal of Catalysis,
;2016, 37(1): 32-42.
doi:
10.1016/S1872-2067(15)60909-3
-
Mesoporous LaMnO3 perovskite catalysts with high surface area were synthesized by using the recently developed hard templating method designated as “nanocasting”. Ordered mesoporous silica designated as SBA-15 was used as the hard template. It was found that the surface area of the nanocast perovskites can be tuned (80-190 m2/g) by varying the aging temperature of the SBA-15 template. Nanocast LaMnO3 catalysts showed high conversion efficiencies for the total oxidation of methanol under steady state conditions, the one with the highest value of surface area being the best catalysts, as expected. Kinetic studies were performed for all of the synthesized catalysts. Rate constants were found to vary in accordance with the specific surface area of the nanocast catalyst which depends on the aging temperature of the parent template. From the rate constants obtained from experimental conversions at various space velocities (19500 to 78200 h-1), values of activation energy and pre-exponential factor for the three nanocast LaMnO3 catalysts were determined by the linear regression of the Arrhenius plot. It is observed that the activation energy for all the catalysts remain constant irrespective of the variation in specific surface area. Further, a linear relationship was found to exist between the pre-exponential factor and specific surface areas of the catalysts indicating that the rates per unit surface area remains the same for all the catalysts.
-
-
-
[1]
[1] A. O'Malley, B. K. Hodnett, Catal. Today, 1999, 54, 31.
-
[2]
[2] T. Garcia, B. Solsona, D. Cazorla-Amoros, A. Linares-Solano, S. H. Taylor, Appl. Catal. B, 2006, 62, 66.
-
[3]
[3] C. H. Kim, G. Qi, K. Dahlberg, W. Li, Science, 2010, 327, 1624.
-
[4]
[4] H. Arai, T. Yamada, K. Eguchi, T. Seiyama, Appl. Catal., 1986, 26, 265.
-
[5]
[5] V. C. Belessi, P. N. Trikalitis, A. K. Ladavos, T. V. Bakas, P. J. Pomonis, Appl. Catal. A, 1999, 177, 53.
-
[6]
[6] H. Taguchi, S. Yamada, M. Nagao, Y. Ichikawa, K. Tabata, Mater. Res. Bull., 2002, 37, 69.
-
[7]
[7] S. O'Brien, L. Brus, C. B. Murray, J. Am. Chem. Soc., 2001, 123, 12085.
-
[8]
[8] J. Kirchnerova, D. Klvana, Solid State Ionics, 1999, 123, 307.
-
[9]
[9] S. Kaliaguine, A. Van Neste, V. Szabo, J. E. Gallot, M. Bassir, R. Muzychuk, Appl. Catal. A, 2001, 209, 345.
-
[10]
[10] H. F. Yang, D. Y. Zhao, J. Mater. Chem., 2005, 15, 1217.
-
[11]
[11] A. H. Lu, F. Schuth, Adv. Mater., 2006, 18, 1793.
-
[12]
[12] H. Yen, Y. Seo, R. Guillet-Nicolas, S. Kaliaguine, F. Kleitz, Chem. Commun., 2011, 47, 10473.
-
[13]
[13] F. Jiao, A. Harrison, A. H. Hill, P. G. Bruce, Adv. Mater., 2007, 19, 4063.
-
[14]
[14] Y. G. Wang, J. W. Ren, Y. Q. Wang, F. Y. Zhang, X. H. Liu, Y. Guo, G. Z. Lu, J. Phys. Chem. C, 2008, 112, 15293.
-
[15]
[15] M. M. Nair, F. Kleitz, S. Kaliaguine, ChemCatChem, 2012, 4, 387.
-
[16]
[16] H. Tüysüz, C. W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schüth, J. Am. Chem. Soc., 2008, 130, 11510.
-
[17]
[17] M. Tiemann, Chem. Mater., 2008, 20, 961.
-
[18]
[18] F. Jiao, K. M. Shaju, P. G. Bruce, Angew. Chem. Int. Ed., 2005, 44, 6550.
-
[19]
[19] B. Z. Tian, X. Y. Liu, L. A. Solovyov, Z. Liu, H. F. Yang, Z. D. Zhang, S. H. Xie, F. Q. Zhang, B. Tu, C. Z. Yu, O. Terasaki, D. Y. Zhao, J. Am. Chem. Soc., 2004, 126, 865.
-
[20]
[20] F. Jiao, A. Harrison, J. C. Jumas, A. V. Chadwick, W. Kockelmann, P. G. Bruce, J. Am. Chem. Soc., 2006, 128, 5468.
-
[21]
[21] W. C. Li, M. Comotti, A. H. Lu, F. Schüth, Chem. Commun., 2006, 1772.
-
[22]
[22] R. K. C. de Lima, M. S. Batista, M. Wallau, E. A. Sanches, Y. P. Mascarenhas, E. A. Urquieta-Gonzalez, Appl. Catal. B, 2009, 90, 441.
-
[23]
[23] Y. C. Du, Q. Meng, J. S. Wang, J. Yan, H. G. Fan, Y. X. Liu, H. X. Dai, Microporous Mesoporous Mater., 2012, 162, 199.
-
[24]
[24] S. P. D. Marques, A. L. Pinheiro, T. P. Braga, A. Valentini, J. M. Filho, A. C. Oliveira, J. Mol. Catal. A, 2011, 348, 1.
-
[25]
[25] Z. Sarshar, F. Kleitz, S. Kaliaguine, Energy Environ. Sci., 2011, 4, 4258.
-
[26]
[26] M. Choi, W. Heo, F. Kleitz, R. Ryoo, Chem. Commun., 2003, 1340.
-
[27]
[27] A. V. Neimark, P. I. Ravikovitch, Microporous Mesoporous Mater., 2001, 44-45, 697.
-
[28]
[28] J. Landers, G. Yu Gor, A. V. Neimark, Colloids Surf. A, 2013, 437, 3.
-
[29]
[29] F. Kleitz, F. Bérubé, R. Guillet-Nicolas, C. M. Yang, M. Thommes, J. Phys. Chem. C, 2010, 114, 9344.
-
[30]
[30] A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem., 2003, 27, 73.
-
[31]
[31] M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater., 2000, 12, 1961.
-
[32]
[32] A. Rumplecker, F. Kleitz, E. L. Salabas, F. Schüth, Chem. Mater., 2007, 19, 485.
-
[33]
[33] F. Jiao, A. H. Hill, A. Harrison, A. Berko, A. V. Chadwick, P. G. Bruce, J. Am. Chem. Soc., 2008, 130, 5262.
-
[34]
[34] H. Tuysuz, M. Comotti, F. Schuth, Chem. Commun., 2008, 34, 4022.
-
[35]
[35] H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, Angew. Chem. Int. Ed., 2012, 51, 12032.
-
[36]
[36] S. Royer, H. Alamdari, D. Duprez, S. Kaliaguine, Appl. Catal. B, 2005, 58, 273.
-
[37]
[37] A. Baiker, P. E. Marti, P. Keusch, E. Fritsch, A. Reller, J. Catal., 1994, 146, 268.
-
[38]
[38] B. Levasseur, S. Kaliaguine, Appl. Catal. A, 2008, 343, 29.
-
[39]
[39] G. Marban, A. B. Fuertes, T. Valdés-Solis, Microporous Mesoporous Mater., 2008, 112, 291.
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[3]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[4]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[5]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[6]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[7]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[8]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[9]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[10]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[11]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
-
[14]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[15]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[16]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[17]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[18]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[19]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[20]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(544)
- HTML views(92)