Citation: Mahesh M. Nair, Freddy Kleitz, Serge Kaliaguine. Pore structure effects on the kinetics of methanol oxidation over nanocast mesoporous perovskites[J]. Chinese Journal of Catalysis, ;2016, 37(1): 32-42. doi: 10.1016/S1872-2067(15)60909-3 shu

Pore structure effects on the kinetics of methanol oxidation over nanocast mesoporous perovskites

  • Corresponding author: Serge Kaliaguine, 
  • Received Date: 21 March 2015
    Available Online: 3 May 2015

    Fund Project: This work was supported by the the National Science and Engineering Research Council (Canada) (Canada)cois de la Recherche sur la Nature et les Technologies (Province of Quebec). (Province of Quebec)

  • Mesoporous LaMnO3 perovskite catalysts with high surface area were synthesized by using the recently developed hard templating method designated as “nanocasting”. Ordered mesoporous silica designated as SBA-15 was used as the hard template. It was found that the surface area of the nanocast perovskites can be tuned (80-190 m2/g) by varying the aging temperature of the SBA-15 template. Nanocast LaMnO3 catalysts showed high conversion efficiencies for the total oxidation of methanol under steady state conditions, the one with the highest value of surface area being the best catalysts, as expected. Kinetic studies were performed for all of the synthesized catalysts. Rate constants were found to vary in accordance with the specific surface area of the nanocast catalyst which depends on the aging temperature of the parent template. From the rate constants obtained from experimental conversions at various space velocities (19500 to 78200 h-1), values of activation energy and pre-exponential factor for the three nanocast LaMnO3 catalysts were determined by the linear regression of the Arrhenius plot. It is observed that the activation energy for all the catalysts remain constant irrespective of the variation in specific surface area. Further, a linear relationship was found to exist between the pre-exponential factor and specific surface areas of the catalysts indicating that the rates per unit surface area remains the same for all the catalysts.
  • 加载中
    1. [1]

      [1] A. O'Malley, B. K. Hodnett, Catal. Today, 1999, 54, 31.

    2. [2]

      [2] T. Garcia, B. Solsona, D. Cazorla-Amoros, A. Linares-Solano, S. H. Taylor, Appl. Catal. B, 2006, 62, 66.

    3. [3]

      [3] C. H. Kim, G. Qi, K. Dahlberg, W. Li, Science, 2010, 327, 1624.

    4. [4]

      [4] H. Arai, T. Yamada, K. Eguchi, T. Seiyama, Appl. Catal., 1986, 26, 265.

    5. [5]

      [5] V. C. Belessi, P. N. Trikalitis, A. K. Ladavos, T. V. Bakas, P. J. Pomonis, Appl. Catal. A, 1999, 177, 53.

    6. [6]

      [6] H. Taguchi, S. Yamada, M. Nagao, Y. Ichikawa, K. Tabata, Mater. Res. Bull., 2002, 37, 69.

    7. [7]

      [7] S. O'Brien, L. Brus, C. B. Murray, J. Am. Chem. Soc., 2001, 123, 12085.

    8. [8]

      [8] J. Kirchnerova, D. Klvana, Solid State Ionics, 1999, 123, 307.

    9. [9]

      [9] S. Kaliaguine, A. Van Neste, V. Szabo, J. E. Gallot, M. Bassir, R. Muzychuk, Appl. Catal. A, 2001, 209, 345.

    10. [10]

      [10] H. F. Yang, D. Y. Zhao, J. Mater. Chem., 2005, 15, 1217.

    11. [11]

      [11] A. H. Lu, F. Schuth, Adv. Mater., 2006, 18, 1793.

    12. [12]

      [12] H. Yen, Y. Seo, R. Guillet-Nicolas, S. Kaliaguine, F. Kleitz, Chem. Commun., 2011, 47, 10473.

    13. [13]

      [13] F. Jiao, A. Harrison, A. H. Hill, P. G. Bruce, Adv. Mater., 2007, 19, 4063.

    14. [14]

      [14] Y. G. Wang, J. W. Ren, Y. Q. Wang, F. Y. Zhang, X. H. Liu, Y. Guo, G. Z. Lu, J. Phys. Chem. C, 2008, 112, 15293.

    15. [15]

      [15] M. M. Nair, F. Kleitz, S. Kaliaguine, ChemCatChem, 2012, 4, 387.

    16. [16]

      [16] H. Tüysüz, C. W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schüth, J. Am. Chem. Soc., 2008, 130, 11510.

    17. [17]

      [17] M. Tiemann, Chem. Mater., 2008, 20, 961.

    18. [18]

      [18] F. Jiao, K. M. Shaju, P. G. Bruce, Angew. Chem. Int. Ed., 2005, 44, 6550.

    19. [19]

      [19] B. Z. Tian, X. Y. Liu, L. A. Solovyov, Z. Liu, H. F. Yang, Z. D. Zhang, S. H. Xie, F. Q. Zhang, B. Tu, C. Z. Yu, O. Terasaki, D. Y. Zhao, J. Am. Chem. Soc., 2004, 126, 865.

    20. [20]

      [20] F. Jiao, A. Harrison, J. C. Jumas, A. V. Chadwick, W. Kockelmann, P. G. Bruce, J. Am. Chem. Soc., 2006, 128, 5468.

    21. [21]

      [21] W. C. Li, M. Comotti, A. H. Lu, F. Schüth, Chem. Commun., 2006, 1772.

    22. [22]

      [22] R. K. C. de Lima, M. S. Batista, M. Wallau, E. A. Sanches, Y. P. Mascarenhas, E. A. Urquieta-Gonzalez, Appl. Catal. B, 2009, 90, 441.

    23. [23]

      [23] Y. C. Du, Q. Meng, J. S. Wang, J. Yan, H. G. Fan, Y. X. Liu, H. X. Dai, Microporous Mesoporous Mater., 2012, 162, 199.

    24. [24]

      [24] S. P. D. Marques, A. L. Pinheiro, T. P. Braga, A. Valentini, J. M. Filho, A. C. Oliveira, J. Mol. Catal. A, 2011, 348, 1.

    25. [25]

      [25] Z. Sarshar, F. Kleitz, S. Kaliaguine, Energy Environ. Sci., 2011, 4, 4258.

    26. [26]

      [26] M. Choi, W. Heo, F. Kleitz, R. Ryoo, Chem. Commun., 2003, 1340.

    27. [27]

      [27] A. V. Neimark, P. I. Ravikovitch, Microporous Mesoporous Mater., 2001, 44-45, 697.

    28. [28]

      [28] J. Landers, G. Yu Gor, A. V. Neimark, Colloids Surf. A, 2013, 437, 3.

    29. [29]

      [29] F. Kleitz, F. Bérubé, R. Guillet-Nicolas, C. M. Yang, M. Thommes, J. Phys. Chem. C, 2010, 114, 9344.

    30. [30]

      [30] A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem., 2003, 27, 73.

    31. [31]

      [31] M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater., 2000, 12, 1961.

    32. [32]

      [32] A. Rumplecker, F. Kleitz, E. L. Salabas, F. Schüth, Chem. Mater., 2007, 19, 485.

    33. [33]

      [33] F. Jiao, A. H. Hill, A. Harrison, A. Berko, A. V. Chadwick, P. G. Bruce, J. Am. Chem. Soc., 2008, 130, 5262.

    34. [34]

      [34] H. Tuysuz, M. Comotti, F. Schuth, Chem. Commun., 2008, 34, 4022.

    35. [35]

      [35] H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, Angew. Chem. Int. Ed., 2012, 51, 12032.

    36. [36]

      [36] S. Royer, H. Alamdari, D. Duprez, S. Kaliaguine, Appl. Catal. B, 2005, 58, 273.

    37. [37]

      [37] A. Baiker, P. E. Marti, P. Keusch, E. Fritsch, A. Reller, J. Catal., 1994, 146, 268.

    38. [38]

      [38] B. Levasseur, S. Kaliaguine, Appl. Catal. A, 2008, 343, 29.

    39. [39]

      [39] G. Marban, A. B. Fuertes, T. Valdés-Solis, Microporous Mesoporous Mater., 2008, 112, 291.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(0)
  • Abstract views(544)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return