Citation: Huanhui Chen, Xiaoci Li, Guoqing Zhao, Hongbo Gu, Zhirong Zhu. Free radical mechanism investigation of the side-chain alkylation of toluene with methanol on basic zeolites X[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1726-1732. doi: 10.1016/S1872-2067(15)60896-8 shu

Free radical mechanism investigation of the side-chain alkylation of toluene with methanol on basic zeolites X

  • Corresponding author: Zhirong Zhu, 
  • Received Date: 27 March 2015
    Available Online: 18 May 2015

    Fund Project: 国家自然科学基金(51174277) (51174277) 上海市重点基础研究(11JC1412500). (11JC1412500)

  • The side-chain alkylation of toluene represents a novel, environmentally friendly, and low cost route for the production of styrene. However, the yield of styrene produced in this way is currently low, and the mechanism responsible for the side-chain alkylation of toluene is poorly understood. Furthermore, the reason for the higher catalytic efficiency of CsX over NaX and KX remains unclear. In this work, the free radical mechanism of the side-chain alkylation of toluene over basic zeolite X has been elucidated using quantum chemical calculations, together with isotope tracing experiments and the reaction between p-nitrotoluene and methanol. The adsorption isotherm of methanol showed that Cs+ ions could block methanol from accessing the β-cage, which is where the side-chain alkylation reaction occurred. Furthermore, the H-D exchange results between toluene and deuterated toluene (C6D5CD3) showed that CsX was more efficient as a catalyst than KX for the conversion of toluene to the corresponding benzyl radical (C6H5CH2·). These two results therefore explain the higher catalytic activity of CsX towards side-chain alkylation than KX. Based on the free radical mechanism, the selectivity of styrene could be increased from 17.4% to 59.4% using CO2 as carrier gas instead of N2.
  • 加载中
    1. [1]

      [1] Yashima T, Sato K, Hayasaka T, Hara N. J Catal, 1972, 26: 303

    2. [2]

      [2] Itoh H, Miyamoto A, Murakami Y. J Catal, 1980, 64: 284

    3. [3]

      [3] Engelhardt J, Szanyi J, Valyon J. J Catal, 1987, 107: 296

    4. [4]

      [4] Itoh H, Hattori T, Suzuki K, Murakami Y. J Catal, 1983, 79: 21

    5. [5]

      [5] Borgna A, Sepúlveda J, Magni S, Apesteguía C. Stud Surf Sci Catal, 2000, 130: 2621

    6. [6]

      [6] Song L L, Li Z R, Zhang R Z, Zhao L F, Li W. Catal Commun, 2012, 19: 90

    7. [7]

      [7] Wieland W S, Davis R J, Garces J M. J Catal, 1998, 173: 490

    8. [8]

      [8] Hunger M, Schenk U, Burger B, Weitkamp J. Angew Chem Int Ed, 1997, 36: 2504

    9. [9]

      [9] Philippou A, Anderson M W. J Am Chem Soc, 1994, 116: 5774

    10. [10]

      [10] Hunger M, Schenk U, Weitkamp J. J Mol Catal A, 1998, 134: 97

    11. [11]

      [11] Hunger M, Schenk U, Seiler M, Weitkamp J. J Mol Catal A, 2000, 156: 153

    12. [12]

      [12] Sidorenko Y N, Galich P N, Gutyrya V S, Il'in V G, Neimark I E. Dokl Akad Nauk SSSR, 1967, 173: 132

    13. [13]

      [13] Freeman J, Unland M. J Catal, 1978, 54: 183

    14. [14]

      [14] Rep M. [Ph.D. Dissertation]. University of Twente, Enschede, 2002, 172

    15. [15]

      [15] Su S J, Prairie M R, Renken A. Appl Catal A, 1992, 91: 131

    16. [16]

      [16] Toppi S, Thomas C, Sayag C, Brodzki D, Fajerwerg K, Le Peltier F, Travers C, Djéga-Mariadassou G. J Catal, 2005, 230: 255

    17. [17]

      [17] Jin T, Xia D H, Xiang Y Z, Zhou Y L. Petrol Sci Technol, 2009, 27: 1821

    18. [18]

      [18] Basler W D, Bein T. J Phys Chem, 1979, 83: 1233

    19. [19]

      [19] Viehe H G, Janousek Z, Merenyi R, Stella L. Acc Chem Res, 1985, 18: 148

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    12. [12]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(0)
  • Abstract views(321)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return