Citation: Sanjay Srivastava, Pravakar Mohanty, Jigisha K. Parikh, Ajay K. Dalai, S. S. Amritphale, Anup K. Khare. Cr-free Co-Cu/SBA-15 catalysts for hydrogenation of biomass-derived α-, β-unsaturated aldehyde to alcohol[J]. Chinese Journal of Catalysis, ;2015, 36(7): 933-942. doi: 10.1016/S1872-2067(15)60870-1 shu

Cr-free Co-Cu/SBA-15 catalysts for hydrogenation of biomass-derived α-, β-unsaturated aldehyde to alcohol

  • Corresponding author: Jigisha K. Parikh, 
  • Received Date: 13 January 2015
    Available Online: 21 April 2015

  • Cr-free bi-metallic SBA-15-supported Co-Cu catalysts were examined in the conversion of biomass-derived α-, β-unsaturated aldehyde (furfural) to value-added chemical furfuryl alcohol (FOL). Co-Cu/SBA-15 catalysts with a fixed Cu loading of 10 wt% and varying Co loadings (2.5, 5, and 10 wt%) were prepared by the impregnation method. The catalysts were characterized by X-ray diffraction, N2 sorption, H2 temperature-programmed reduction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, CO chemisorption, and inductively coupled plasma mass spectrometry. The influence of different reaction parameters such as temperature, pressure, catalyst dosage, and furfural concentration on the catalyst performance was evaluated. Relative to catalysts supported on amorphous silica, the current SBA-15-supported Co-Cu catalysts displayed higher performance, attaining a furfural conversion of 99% and furfuryl alcohol selectivity of 80%. The catalytic reactions were conducted in a 100-mL autoclave at 170 ℃ and 2 MPa H2 pressure for 4 h.
  • 加载中
    1. [1]

      [1] Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411

    2. [2]

      [2] Nanda S, Mohanty P, Pant K K, Naik S, Kozinski J A, Dalai A K. Bioenergy Res, 2013, 6: 663

    3. [3]

      [3] Butler E, Devlin G, Meier D, McDonnell K. Renew Sustain Energy Rev, 2011, 15: 4171

    4. [4]

      [4] Chiaramonti D, Oasmaa A, Solantausta Y. Renew Sustain Energy Rev, 2007, 11: 1056

    5. [5]

      [5] Yan K, Wu G S, Lafleur T, Jarvis C. Renew Sustain Energy Rev, 2014, 38: 663

    6. [6]

      [6] Yang W, Sen A. ChemSusChem, 2011, 4: 349

    7. [7]

      [7] Sharma R V, Das U, Sammynaiken R, Dalai A K. Appl Catal A, 2013, 454: 127

    8. [8]

      [8] Borts M S, Gilchenok N D, Ignatev V M, Gurevich G S. J Appl Chem USSR, 1986, 59: 114

    9. [9]

      [9] Rao R, Dandekar A, Baker R T K, Vannice M A. J Catal, 1997, 171: 406

    10. [10]

      [10] Vaidya P D, Mahajani V V. Ind Eng Chem Res, 2003, 42: 3881

    11. [11]

      [11] Rojas H, Martines J J, Reyes P. Dyna, 2010, 163: 151

    12. [12]

      [12] Sitthisa S, Sooknoi T, Ma Y, Balbuena P B, Resasco D E. J Catal, 2011, 277: 1

    13. [13]

      [13] Villaverde M M, Bertero N M, Garetto T F, Marchi A J. Catal Today, 2013, 213: 87

    14. [14]

      [14] Yan K, Chen A C. Energy, 2013, 58: 357

    15. [15]

      [15] Seo G, Chon H. J Catal, 1981, 67: 424

    16. [16]

      [16] Lee J Y, Lee D W, Lee K Y, Wang Y. Catal Today, 2009, 146: 260

    17. [17]

      [17] Yan K, Chen A C. Fuel, 2014, 115: 101

    18. [18]

      [18] Burnette L W, Johns I B, Holdren R F, Hixon R M. Ind Eng Chem, 1948, 40: 502

    19. [19]

      [19] Dong F, Zhu Y L, Zheng H Y, Zhu Y F, Li X Q, Li Y W. J Mol Catal A, 2015, 398: 140

    20. [20]

      [20] Liu B J, Lu L H, Wang B C, Cai T X, Katsuyoshi I. Appl Catal A, 1998, 171: 117

    21. [21]

      [21] Thomas D D. US Patent 4146460. 1979

    22. [22]

      [22] Erzhanova M S, Beisekov T B. SU Patent 450585. 1974

    23. [23]

      [23] Beisekov T B, Masaeva S A, Kuatbekov A M, Pilipenko S V, Utebaeva A. Khim Promst, 1992: 507

    24. [24]

      [24] Pljusnin L D, Beisekov T, Jerzhanova M S, Daurenbekov B D. Khim Promst, 1988: 672

    25. [25]

      [25] Sitthisa S, Pham T, Prasomsri T, Sookni T, Mallinson R G, Resasco D E. J Catal, 2011, 280: 17

    26. [26]

      [26] Sitthisa S, An W, Resasco D E. J Catal, 2011, 284: 90

    27. [27]

      [27] Merlo A B, Vetere V, Ruggera J F, Casella M L. Catal Commun, 2009, 10: 1665

    28. [28]

      [28] Reddy B M, Reddy G K, Rao K N, Khan A, Ganesh I. J Mol Catal A, 2007, 265: 276

    29. [29]

      [29] Wu J, Shen Y M, Liu C H, Wang H B, Geng C J, Zhang Z X. Catal Commum, 2005, 6: 633

    30. [30]

      [30] Li H, Chai W M, Luo H S, Li H X. Chin J Chem, 2006, 24: 1704

    31. [31]

      [31] Chen X F, Li H X, Luo H S, Qiao M H. Appl Catal A, 2002, 233: 13

    32. [32]

      [32] Wei S Q, Cui H Y, Wang J H, Zhuo S P, Yi W M, Wang L H, Li Z H. Particuology, 2011, 9: 69

    33. [33]

      [33] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548

    34. [34]

      [34] Vargas-Hernandez D, Rubio-Caballero J M, Santamarıa-Gonzalez J, Moreno-Tost R, Merida-Robles J M, Perez-Cruz M A, Jimenez-Lopez A, Hernandez-Huesca A, Maireles-Torres. J Mol Catal A, 2014, 383-384: 106

    35. [35]

      [35] Yan K, Lafleur T, Jarvis C, Wu G S. J Clean Prod, 2014, 72: 230

    36. [36]

      [36] Ramachandran P A, Chaudhari R V. Three-Phase Catalytic Reactors. New York: Gordon and Breach, 1983. 427

    37. [37]

      [37] Klimova T, Reyes J, Gutierrez O, Lizama L. Appl Catal A, 2008, 335: 159

    38. [38]

      [38] Soni K, Mouli K C, Dalai A K, Adjaye J. Catal Lett, 2010, 136: 116

    39. [39]

      [39] Dhar G M, Kumaran G M, Kumar M, Rawat K S, Sharma L D, Raju B D, Rama Rao K S. Catal Today, 2005, 99: 309

    40. [40]

      [40] Carrero A, Calles J A, Vizcaíno A J. Appl Catal A, 2007, 327: 82

    41. [41]

      [41] Zhu Y Y, Wang S R, Zhu L J, Ge X L, Li X B, Luo Z Y. Catal Lett, 2010, 135: 275

    42. [42]

      [42] Marchi A J, Di Cosimo J I, Apesteguia C R. Catal Today, 1992, 15: 383

    43. [43]

      [43] Cesar D V, Perez C A, Salim V M M, Schmal M. Appl Catal A, 1999, 176: 205

    44. [44]

      [44] Iglesia E, Soled S L, Baumgartner J E, Reyes S C. J Catal, 1995, 153: 108

    45. [45]

      [45] Tien-Thao N, Zahedi-Niaki M H, Alamdari H, Kaliaguine S. J Catal, 2007, 245: 348

    46. [46]

      [46] Xu X D, Mausbeck D, Scholten J J F. Catal Today, 1991, 10: 429

    47. [47]

      [47] Baker J E, Burch R, Hibble S J, Loader P K. Appl Catal, 1990, 65: 281

    48. [48]

      [48] Mohanty P, Pant K K, Parikh J, Sharma D K. Fuel Process Technol, 2011, 92: 600

    49. [49]

      [49] An K, Somorjai G A. Catal Lett, 2015, 145: 233

    50. [50]

      [50] Nagaraja B M, Siva Kumar V, Shasikala V, Padmasri A H, Sreedhar B, Raju B D, Rama Rao K S. Catal Commun, 2003, 4: 287

    51. [51]

      [51] Liu D X, Zemlyanov D, Wu T P, Lobo-Lapidus R J, Dumesic J A, Miller J T, Marshall C L. J Catal, 2013, 299: 336

    52. [52]

      [52] Vetere V, Merlo A B, Ruggera J F, Casella M L. J Braz Chem Soc, 2010, 21: 914

    53. [53]

      [53] Sitthisa S, Resasco D E. Catal Lett, 2011, 141: 784

  • 加载中
    1. [1]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    2. [2]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    3. [3]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    4. [4]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    5. [5]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    6. [6]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    9. [9]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    10. [10]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    11. [11]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    12. [12]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    13. [13]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    14. [14]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    15. [15]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    16. [16]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    17. [17]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    18. [18]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

Metrics
  • PDF Downloads(0)
  • Abstract views(258)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return