Citation:
Huanan Cui, Jianying Shi, Hong Liu. Influence of Bi chemical state on the photocatalytic performance of Bi-doped NaTaO3[J]. Chinese Journal of Catalysis,
;2015, 36(7): 969-974.
doi:
10.1016/S1872-2067(15)60858-0
-
NaBiO3 and Bi(NO3)3 were used to synthesize Bi-doped NaTaO3. The influence of the Bi chemical state on the photocatalytic activity was investigated using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and diffused reflectance spectroscopy to study the structure, chemical state and light absorption characteristics, respectively. The photocatalytic activity was evaluated by the H2 evolution water splitting reaction. The monoclinic phase of NaTaO3 remained intact for the two Bi-doped samples, but the Ta-O-Ta bond was distorted from 180° after Bi doping. XPS results indicated that Bi3+ was doped into NaTaO3 with the Bi(NO3)3 precursor, while Bi5+ and Bi3+ were doped into NaTaO3 with the NaBiO3 precursor. The two samples showed identical light absorption, where doping with Bi extended the light absorption to long wavelength light as expected. However, Bi3+ doping did not promote the photocatalytic activity of NaTaO3, while Bi5+ and Bi3+ doping did. The distorted Ta-O-Ta bond from 180° due to doping with Bi was detrimental for charge carrier transfer in the photocatalytic process. In contrast, the vacancies or defects in the NaTaO3 lattice induced by Bi doping for charge balance were beneficial for charge carrier separation. The opposing action of these two factors resulted in the activity of the Bi3+-doped sample being comparable with pristine NaTaO3. For Bi5+- and Bi3+-doped NaTaO3, a high concentration of defects was induced by the high valence Bi5+ ion and this led to its higher photocatalytic activity. Our results indicated that charge carrier transfer is a priority factor in the photocatalytic process and the doping of a high valence ion in the ABO3 structure is a way to promote the separation of charge carriers.
-
Keywords:
- Photocatalyst,
- Sodium tantalum oxide,
- Bi doping,
- Chemical state,
- Water splitting
-
-
-
[1]
[1] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295
-
[2]
[2] Kang H W, Kim E J, Park S B. Int J Photoenergy, 2008, Article ID 519643
-
[3]
[3] Kato H, Kobayashi H, Kudo A. J Phys Chem B, 2002, 106: 12441
-
[4]
[4] Ishihara T, Nishiguchi H, Fukamachi K, Takita Y. J Phys Chem B, 1999, 103: 1
-
[5]
[5] Mizoguchi H, Ueda K, Orita M, Moon S C, Kajihara K, Hirano M, Hosono H. Mater Res Bull, 2002, 37: 2401
-
[6]
[6] Ouyang S X, Tong H, Umezawa N, Cao J Y, Li P, Bi Y P, Zhang Y J, Ye J H. J Am Chem Soc, 2012, 134: 1974
-
[7]
[7] Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253
-
[8]
[8] Ditzig J, Liu H, Logan B E. Int J Hydrogen Energy, 2007, 32: 2296
-
[9]
[9] Kudo A, Niishiro R, Iwase A, Kato H. Chem Phys, 2007, 339: 104
-
[10]
[10] Kang H W, Lim S N, Park S B. Int J Hydrogen Energy, 2012, 37: 4026
-
[11]
[11] Gao Y, Su Y G, Meng Y, Wang S W, Jia Q Y, Wang X J. Integr Ferroelectr, 2011, 127: 106
-
[12]
[12] Liu Y L, Su Y G, Han H, Wang X J. J Nanosci Nanotechnol, 2013, 13: 853
-
[13]
[13] Husin H, Su W N, Chen H M, Pan C J, Chang S H, Rick J, Chuang W T, Sheu H S, Hwang B J. Green Chem, 2011, 13: 1745
-
[14]
[14] Hu C C, Lee Y L, Teng H S. J Mater Chem, 2011, 21: 3824
-
[15]
[15] Li X, Zang J L. Catal Commun, 2011, 12: 1380
-
[16]
[16] Iwase A, Kato H, Kudo A. ChemSusChem, 2009, 2: 873
-
[17]
[17] Kudo A, Kato H. Chem Phys Lett, 2000, 331: 373
-
[18]
[18] Zhou X, Shi J Y, Li C. J Phys Chem C, 2001, 115: 8305
-
[19]
[19] Kanhere P, Nisar J, Tang Y X, Pathak B, Ahuja R, Zheng J W, Chen Z. J Phys Chem C, 2012, 116: 22767
-
[20]
[20] Kang H W, Lim S N, Park S B, Park A H A. Int J Hydrogen Energy, 2013, 38: 6323
-
[21]
[21] Liu H M, Nakamura R, Nakato Y. J Electrochem Soc, 2005, 152: G856
-
[22]
[22] Konig J, Jancar B, Suvorov D. J Am Ceram Soc, 2007, 90: 3621
-
[23]
[23] Wang X J, Bai H L, Meng Y, Zhao Y H, Tang C H, Gao Y. J Nanosci Nanotechnol, 2010, 10: 1788
-
[24]
[24] Kanhere P D, Zheng J W, Chen Z. J Phys Chem C, 2011, 115: 11846
-
[25]
[25] Li Z G, Wang Y X, Liu J W, Chen G, Li Y X, Zhou C. Int J Hydrogen Energy, 2009, 34: 147
-
[26]
[26] Shi J Y, Chen T, Zhou G H, Feng Z C, Ying P L, Li C. Chem J Chin Univ (石建英, 陈涛, 周国华, 冯兆池, 应品良, 李灿. 高等学校化学学报), 2007, 28: 692
-
[27]
[27] Shi J Y, Cui H N, Liang Z X, Lu X H, Tong Y X, Su C Y, Liu H. Energy Environ Sci, 2011, 4: 466
-
[28]
[28] Perry C H, Tornberg N E. Phys Rev, 1969, 183: 595
-
[29]
[29] Hu C C, Teng H. Appl Catal A, 2007, 331: 44
-
[30]
[30] Sidorov N V, Palatnikov M N, Mel’nik N N, Kalinnikov V T. J Appl Spectroscopy, 2000, 67: 259
-
[31]
[31] Reddy K H, Martha S, Parida K M. RSC Adv, 2012, 2: 9423
-
[32]
[32] Shi R, Lin J, Wang Y J, Xu J, Zhu Y F. J Phys Chem C, 2010, 114: 6472
-
[1]
-
-
-
[1]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[2]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[3]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[4]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[5]
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
-
[6]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[7]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[8]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[9]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[10]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[11]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[12]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[14]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[15]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[16]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
-
[17]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[18]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[19]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[20]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(417)
- HTML views(29)