Citation: Qing Chang, Guodong Jiang, Heqing Tang, Na Li, Jia Huang, Laiyan Wu. Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite[J]. Chinese Journal of Catalysis, ;2015, 36(7): 961-968. doi: 10.1016/S1872-2067(15)60856-7 shu

Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite

  • Corresponding author: Guodong Jiang, 
  • Received Date: 26 January 2015
    Available Online: 8 April 2015

    Fund Project: 国家自然科学基金(21107143, 21207033和21307164) (21107143, 21207033和21307164) 中南民族大学中央高校基本科研业务费专项资金(CZY15003). (CZY15003)

  • Magnetic Fe3O4 nanoparticles were successfully deposited on graphene oxide sheets by ultrasound-assisted coprecipitation. The nanoparticles were characterized using transmission electron microscopy, vibrating sample magnetometry, and X-ray photoelectron spectroscopy. The synthesized material was used as a support for the immobilization of horseradish peroxidase (HRP). The removals of 2-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol using the immobilized HRP were investigated. Batch degradation studies were used to determine the effects of the initial solution pH values, reaction temperature, reaction time, H2O2 and chlorophenol concentrations, and immobilized enzyme dosage on the removal of chlorophenols. The different numbers and positions of electron-withdrawing substituents affected the chlorophenol removal efficiency; the order of the removal efficiencies was 2-chlorophenol < 4-chlorophenol < 2,4-dichlorophenol. The oxidation products formed during chlorophenol degradation were identified using gas chromatography-mass spectrometry. The biochemical properties of the immobilized HRP were investigated; the results indicated that the storage stability and tolerance to changes in pH and temperature of the immobilized HRP were better than those of free HRP. The nanoparticles were recovered using an external magnetic field, and the immobilized HRP retained 66% of its initial activity for the first four cycles, showing that the immobilized HRP had moderate stability. These results suggest that the immobilized enzyme has potential application in wastewater treatment.
  • 加载中
    1. [1]

      [1] Zhang J B, Xu Z Q, Chen H, Zong Y R. Biochem Eng J, 2009, 45: 54

    2. [2]

      [2] Elghniji K, Hentati O, Mlaik N, Mahfoudh A, Ksibi M. J Environ Sci, 2012, 24: 479

    3. [3]

      [3] Jia J B, Zhang S P, Wang P, Wang H J. J Hazard Mater, 2012, 205-206: 150

    4. [4]

      [4] Pasang T, Ranganathaiah C. Ind Eng Chem Res, 2013, 52: 7445

    5. [5]

      [5] Zhou L C, Meng X G, Fu J W, Yang Y C, Yang P, Mi C. Appl Surf Sci, 2014, 292: 735

    6. [6]

      [6] Munoz M, de Pedro Z M, Casas J A, Rodriguez J J. Chem Eng J, 2013, 228: 646

    7. [7]

      [7] Xu L J, Wang J L. Appl Catal B, 2013, 142-143: 396

    8. [8]

      [8] Jiang Y J, Tang W, Gao J, Zhou L Y, He Y. Enzyme Microb Technol, 2014, 55: 1

    9. [9]

      [9] Li H, Shen T T, Wang X L, Lin K F, Liu Y D, Lu S G, Gu J D, Wang P, Lu Q, Du X M. Bioresource Technol, 2013, 137: 286

    10. [10]

      [10] Yamada K, Shibuya T, Noda M, Uchiyama N, Kashiwada A, Matsuda K, Hirata M. Biosci Biotechnol Biochem, 2007, 71: 2503

    11. [11]

      [11] Bayramoğlu G, Arıca M Y. J Hazard Mater, 2008, 156: 148

    12. [12]

      [12] Dong S P, Mao L, Luo S Q, Zhou L, Feng Y P, Gao S X. Environ Sci Pollut Res, 2014, 21: 2358

    13. [13]

      [13] Magario I, García Einschlag F S, Rueda E H, Zygadlo J, Ferreira M L. J Mol Catal A, 2012, 352: 1

    14. [14]

      [14] Laurenti E, Ghibaudi E, Todaro G, Pia Ferrari R. J Inorg Biochem, 2002, 92: 75

    15. [15]

      [15] Chang Q, Zhu L H, Jiang G D, Tang H Q. Anal Bioanal Chem, 2009, 395: 2377

    16. [16]

      [16] Bukhari A, Idris A, Atta M, Loong T C. Chin J Catal (催化学报), 2014, 35: 1555

    17. [17]

      [17] Chang Q, Tang H Q. Molecules, 2014, 19: 15768

    18. [18]

      [18] Jiang G D, Lin Z F, Chen C, Zhu L H, Chang Q, Wang N, Wei W, Tang H Q. Carbon, 2011, 49: 2693

    19. [19]

      [19] Zhang F, Zheng B, Zhang J L, Huang X L, Liu H, Guo S W, Zhang J Y. J Phys Chem C, 2010, 114: 8469

    20. [20]

      [20] Zhang J L, Zhang F, Yang H J, Huang X L, Liu H, Zhang J Y, Guo S W. Langmuir, 2010, 26: 6083

    21. [21]

      [21] Chang Q, Tang H Q. Microchim Acta, 2014, 181: 527

    22. [22]

      [22] Zuo X L, He S J, Li D, Peng C, Huang Q, Song S P, Fan C H. Langmuir, 2010, 26: 1936

    23. [23]

      [23] Zamani F, Izadi E. Chin J Catal (催化学报), 2014, 35: 21

    24. [24]

      [24] Borlido L, Azevedo A M, Roque A C A, Aires-Barros M R. Biotechnol Adv, 2013, 31: 1374

    25. [25]

      [25] Hu Y, Meng L J, Niu L Y, Lu Q H. Langmuir, 2013, 29: 9156

    26. [26]

      [26] Chen M L, He Y J, Chen X W, Wang J H. Langmuir, 2012, 28: 16469

    27. [27]

      [27] Wu S, Wang H N, Tao S Y, Wang C, Zhang L H, Liu Z G, Meng C G. Anal Chim Acta, 2011, 686: 81

    28. [28]

      [28] Hummers W S Jr, Offeman R E. J Am Chem Soc, 1958, 80: 1339

    29. [29]

      [29] Wu Y M, Taylor K E, Biswas N, Bewtra J K. Enzyme Microb Technol, 1998, 22: 315

    30. [30]

      [30] Nicell J A, Wright H. Enzyme Microb Technol, 1997, 21: 302

    31. [31]

      [31] Chandra V, Park J, Chun Y, Lee J W, Hwang I C, Kim K S. ACS Nano, 2010, 4: 3979

    32. [32]

      [32] Lu J, Jiao X L, Chen D R, Li W. J Phys Chem C, 2009, 113: 4012

    33. [33]

      [33] Mohan S V, Prasad K K, Rao N C, Sarma P N. Chemosphere, 2005, 58: 1097

    34. [34]

      [34] Cheng J, Yu S M, Zuo P. Water Res, 2006, 40: 283

    35. [35]

      [35] Wright H, Nicell J A. Bioresource Technol, 1999, 70: 69

    36. [36]

      [36] Song H Y, Liu J Z, Xiong Y H, Weng L P, Ji L N. J Mol Catal B, 2003, 22: 37

    37. [37]

      [37] Munoz M, de Pedro Z M, Casas J A, Rodriguez J J. J Hazard Mater, 2011, 190: 993

    38. [38]

      [38] Zhang T, Xu X L, Jin Y N, Wu J, Xu Z K. J Mol Catal B, 2014, 106: 56

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    4. [4]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    11. [11]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    18. [18]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    19. [19]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    20. [20]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

Metrics
  • PDF Downloads(0)
  • Abstract views(255)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return