Citation: Sneha Yadav, Jitender M. Khurana. Cinnamomum tamala leaf extract-mediated green synthesis of Ag nanoparticles and their use in pyranopyrazles synthesis[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1042-1046. doi: 10.1016/S1872-2067(15)60853-1 shu

Cinnamomum tamala leaf extract-mediated green synthesis of Ag nanoparticles and their use in pyranopyrazles synthesis

  • Corresponding author: Jitender M. Khurana, 
  • Received Date: 20 January 2015
    Available Online: 17 March 2015

  • A novel, biochemical, and eco-friendly method has been developed for the synthesis of Ag nanoparticles using an aqueous leaf extract of readily accessible Cinnamomum tamala as reducing and stabilizing agents. These Ag nanoparticles were used to catalyze the synthesis of pyranopyrazoles. The green nature and ease of recovery and reusability of the catalyst, together with high yields of products, make this protocol attractive and useful.
  • 加载中
    1. [1]

      [1] Okuda M, Kobayashi Y, Suzuki K, Sonoda K, Kondoh T, Wagawa A, Kondo A, Yoshimura H. Nano Lett, 2005, 5:991

    2. [2]

      [2] Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P. Nano Lett, 2003 3: 1229

    3. [3]

      [3] Shipway A N, Katz E, Willner I. ChemPhysChem, 2000, 1: 18

    4. [4]

      [4] Feng Q L, Wu J, Chen G Q, Kim T N, Kim J O. J Biomed Mater Res, 2000, 52: 662

    5. [5]

      [5] Liau S Y, Read D C, Pugh W J, Furr J R, Russell A D. Lett Appl Microbiol, 1997, 25: 279

    6. [6]

      [6] Wong K K Y, Cheung S O F, Huang L M, Niu J, Tao C, Ho C M, Che C M, Tam P K. ChemMedChem, 2009, 4: 1129

    7. [7]

      [7] Leopold N, Lendl B. J Phys Chem B, 2003, 107: 5723

    8. [8]

      [8] Zhang Y H, Chen F, Zhuang J H, Tang Y, Wang D J, Wang Y J, Dong A G, Ren N. Chem Commun, 2002: 2814

    9. [9]

      [9] Zhang J P, Sheng L Q, Chen P. Chin Chem Lett, 2003, 14: 645

    10. [10]

      [10] Shchukin D G, Radtchenko I L, Sukhorukov G B. ChemPhysChem, 2003, 4: 1101

    11. [11]

      [11] He B L, Tan J J, Liew K Y, Liu H F. J Mol Catal A, 2004, 221: 121

    12. [12]

      [12] McLeod M C, McHenry R S, Beckman E J, Roberts C B. J Phys Chem B, 2003, 107: 2693

    13. [13]

      [13] Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Nanotechnology, 2003, 14: 95

    14. [14]

      [14] Li S K, Shen Y H, Xie A J, Yu X R, Qiu L G, Zhang L, Zhang Q F. Green Chem, 2007, 9: 852

    15. [15]

      [15] Chandran S P, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Biotechnol Progr, 2006 22: 577

    16. [16]

      [16] Huang J L, Li Q B, Sun D H, Lu Y H, Su Y B, Yang X, Wang H X, Wang Y P, Shao W Y, He N, Hong J Q, Chen C X. Nanotechnology, 2007, 18: 105104

    17. [17]

      [17] Krishnaraj C, Jagan E G, Rajasekar S, Selvakumar P, Kalaichelvan P T, Mohan N. Colloids Surf B, 2010, 76: 50

    18. [18]

      [18] Ankamwar B, Damle C, Ahmad A, Sastry M. J Nanosci Nanotechnol, 2005, 10: 1665

    19. [19]

      [19] Bar H, Bhui D K, Sahoo G P, Sarkar P, De S P, Misra A. Colloids Surf A, 2009, 339: 134

    20. [20]

      [20] Bankar A, Joshi B, Kumar A R, Zinjarde S. Colloids Surf A, 2010, 368: 58

    21. [21]

      [21] Ahmad N, Sharma S, Alam M K, Singh V N, Shamsi S F, Mehta B R, Fatma A. Colloids Surf B, 2010, 81: 81

    22. [22]

      [22] Sanpui P, Murugadoss A, Prasad P V D, Ghosh S S, Chattopadhyay A. Int J Food Microbiol, 2008, 124: 142

    23. [23]

      [23] Murugadoss A, Chattopadhyay A. J Phys Chem C, 2008, 112: 11265

    24. [24]

      [24] Yan W J, Wang R, Xu Z Q, Xu J K, Lin L, Shen Z Q, Zhou Y F. J Mol Catal A, 2006, 255: 81

    25. [25]

      [25] Yong G P, Tian D, Tong H W, Liu S M. J Mol Catal A, 2010, 323: 40

    26. [26]

      [26] Bhatte K D, Tambade P J, Dhake K P, Bhanage B M. Catal Commun, 2010, 11: 1233

    27. [27]

      [27] Cong H. Becker C F, Elliott S J, Grinstaff M W, Porco J A. J Am Chem Soc, 2010, 132: 7514

    28. [28]

      [28] Chen Y Y, Wang C, Liu H Y, Qiu J S, Bao X H. Chem Commun, 2005: 5298

    29. [29]

      [29] Rema J, Leela N K, Krishnamoorthy B, Mathew P A. J Med Aromat Plant Sci, 2005, 27: 515

    30. [30]

      [30] Singh A K, Talat M, Singh D P, Srivastava O N. J Nanopart Res, 2010, 12: 1667

    31. [31]

      [31] Khalil M M H, Ismail E H, El-Baghdady K Z, Mohamed D. Arab J Chem, 2014, 7: 1131

    32. [32]

      [32] Karuppiah M, Rajmohan R. Mater Lett, 2013, 97: 141

    33. [33]

      [33] Philip D, Unni C. Phys E, 2011, 43: 1318

    34. [34]

      [34] Kalimuthu K, Babu R S, Venkataraman D, Bilal M, Gurunathan S. Colloids Surf B, 2008, 65: 150

    35. [35]

      [35] Vijayaraghavan K, Nalini S P, Prakash N U, Madhankumar D. Mater Lett, 2012, 75: 33

    36. [36]

      [36] Swaroop T R, Sharath Kumar K S, Palanivelu M, Chaitanya S, Rangappa K S. J Heterocycl Chem, 2014, 51: 1866

    37. [37]

      [37] Wu M S, Feng Q Q, Wan D H, Ma J Y. Synth Commun, 2013, 43: 1721

    38. [38]

      [38] Vasuki G, Kumaravel K. Tetrahedron Lett, 2008, 49: 5636

    39. [39]

      [39] Kanagaraj K, Pitchumani K. Tetrahedron Lett, 2010, 51: 3312

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    3. [3]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    4. [4]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    5. [5]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    6. [6]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    7. [7]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    8. [8]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    9. [9]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    10. [10]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    11. [11]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    13. [13]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    14. [14]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    15. [15]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    16. [16]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    17. [17]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    18. [18]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    19. [19]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    20. [20]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

Metrics
  • PDF Downloads(0)
  • Abstract views(241)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return