Citation: Jia-de Li, Chang-lin Yu, Wen Fang, Li-hua Zhu, Wan-qin Zhou, Qi-zhe Fan. Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres[J]. Chinese Journal of Catalysis, ;2015, 36(7): 987-993. doi: 10.1016/S1872-2067(15)60849-X shu

Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres

  • Corresponding author: Chang-lin Yu, 
  • Received Date: 25 February 2015
    Available Online: 27 March 2015

    Fund Project: 国家自然科学基金(21067004, 21263005) (21067004, 21263005) 江西省自然科学基金青年科学基金计划(20133BAB21003) (20133BAB21003) 江西省教育厅高等学校科技落地计划项目(KJLD14046) (KJLD14046) 江西省青年科学家培养项目(20122BCB23015) (20122BCB23015) 江西省远航工程, 江西省研究生创新资金项目(3104000089, 3104100013) (3104000089, 3104100013) 江西理工大学研究生创新资金项目(104100039). (104100039)

  • Bi2WO6 microspheres with a diameter of 1.5-2 μm were prepared by a hydrothermal method, and then coated with different contents of AgCl to form heterostructured AgCl/Bi2WO6 microspheres. The prepared Bi2WO6 and AgCl/Bi2WO6 photocatalysts were characterized by X-ray diffraction, N2 physical adsorption, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic activity of the catalysts was evaluated by photocatalytic degradation of rhodamine B under ultraviolet and visible light irradiation. Results showed that the deposition of AgCl had no obvious effect on the light absorption and surface properties of Bi2WO6. However, the heterostructured AgCl/Bi2WO6 photocatalysts exhibited considerably higher activity than the pure AgCl and Bi2WO6 catalysts. With the optimal AgCl content of 20 wt%, the photocatalytic activity of the heterostructured AgCl/Bi2WO6 catalyst was increased under both ultraviolet and visible light compared with that of Bi2WO6. The main reason for the enhanced photocatalytic activity is attributed to the formation of AgCl/Bi2WO6 heterostructures effectively suppressing the recombination of photogenerated electrons and holes.
  • 加载中
    1. [1]

      [1] He R A, Cao Sh W, Zhou P, Yu J G. Chin J Catal (赫荣安, 曹少文, 周鹏, 余家国. 催化学报), 2014, 35: 989

    2. [2]

      [2] Yu C L, Wei L F, Zhou W Q, Chen J C, Fan Q Z, Liu H. Appl Sur Sci, 2014, 319: 312

    3. [3]

      [3] Bian Z F, Cao F L, Zhu J, Li H X. Environ Sci Technol, 2015, 49: 2418

    4. [4]

      [4] Xu D F, Cheng B, Cao S W, Yu J G. Appl Catal B, 2015, 164: 380

    5. [5]

      [5] Yu C L, Chen J C, Cao F F, Li X, Fan Q Z, Yu J C, Wei L F. Chin J Catal (余长林, 陈建钗, 操芳芳, 李鑫, 樊启哲, Yu J C, 魏龙福. 催化学报), 2013, 34:385

    6. [6]

      [6] Wang P, Ming T S, Wang G H, Wang X F, Yu H G, Yu J G. J Mol Catal A, 2014, 381: 114

    7. [7]

      [7] Tang J W, Zou Z G, Ye J H. Catal Lett, 2004, 92: 53

    8. [8]

      [8] Liu Y M, Lv H, Hu J Y, Li Z J. Mater Lett, 2015,139: 401

    9. [9]

      [9] Liu L, Wang Y F, An W J, Hu J S, Cui W Q, Liang Y H. J Mol Catal A, 2014, 394: 309

    10. [10]

      [10] Zhao G, Liu S W, Lu Q F, Xu F X, Sun H Y. J Alloys Compd, 2013, 578: 12

    11. [11]

      [11] Li Y, Liu J, Huang X, Li G. Cryst Growth Des, 2007, 7: 1350

    12. [12]

      [12] Liu Y, Wang W M, Fu Z Y, Wang H, Wang Y C, Zhang J Y. J Inorg Mater (刘瑛, 王为民, 傅正义, 王皓, 王玉成, 张金咏. 无机材料学报), 2011, 26: 1169

    13. [13]

      [13] Zhang L W, Wang Y J, Cheng H Y, Yao W Q, Zhu Y F. Adv Mater. 2009, 21: 1286

    14. [14]

      [14] Zhang L S, Wang W Z, Zhou L, Xu H L. Small, 2007, 3: 1618

    15. [15]

      [15] Yu C L, Cao F F, Li X, Li G, Xie Y, Yu J C, Shu Q, Fan Q Z, Chen J C. Chem Eng J, 2013, 219: 86

    16. [16]

      [16] Li X Z, Liu H, Cheng L F, Tong H J. Environ Sci Technol, 2003, 37: 3989

    17. [17]

      [17] Yu C L, Yang K, Xie Y, Fan Q Z, Yu J C, Shu Q, Wang C Y. Nanoscale, 2013, 5: 2142

    18. [18]

      [18] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900

    19. [19]

      [19] Yu C L, Fan C F, Yu J C, Zhou W Q, Yang K. Mater Res Bull, 2011, 46: 140

    20. [20]

      [20] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X. Chin J Catal (余长林, 杨凯, 舒庆, Yu J C, 操芳芳, 李鑫. 催化学报), 2011, 32: 555

    21. [21]

      [21] Yu C L, Li G, Kumar S, Yang K, Jin R C. Adv Mater, 2014, 26: 892

    22. [22]

      [22] Gao L, Zheng S, Zhang Q H. Nano TiO2 Photocatalytic Materials and Their Application. Beijing: Chem Ind Press, 2002. 110

    23. [23]

      [23] Yu C L, Zhou W Q, Yu J C, Liu H, Wei L F. Chin J Catal (余长林, 周晚琴, 余济美, 刘鸿, 魏龙福. 催化学报), 2014, 35: 1609

    24. [24]

      [24] Dai G P, Yu J G, Liu G. J Phys Chem C, 2011, 115: 7339

    25. [25]

      [25] Fu H B, Zhang L W, Yao W Q, Zhu Y F. Appl Catal B, 2006, 66: 100

    26. [26]

      [26] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ Sci Technol, 2007, 41: 6234

  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    14. [14]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(284)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return