Citation: Bo Yuan, Jiangxia Wei, Tianjiao Hu, Haibo Yao, Zhenhua Jiang, Zhiwei Fang, Zengyong Chu. Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1009-1016. doi: 10.1016/S1872-2067(15)60844-0 shu

Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B

  • Corresponding author: Zengyong Chu, 
  • Received Date: 25 January 2015
    Available Online: 20 March 2015

    Fund Project: 国家自然科学基金(51073172) (51073172) 湖南省自然科学杰出青年基金(14JJ1001). (14JJ1001)

  • A hybrid catalyst of g-C3N4 (graphitic carbon nitride)/rGO (reduced graphene oxide) was prepared by directly heating a mixture of melamine and GO in air. g-C3N4 in the hybrid retained the structure of pristine g-C3N4, and the heterojunction between g-C3N4 and rGO was formed by π-π interaction. The highest photocatalytic efficiency for the degradation of rhodamine B (RhB) was with the melamine/GO mass ratio of 800/1, with a first order rate constant 2.6 times that of pristine g-C3N4. The enhanced photocatalytic activity was assigned to the rGO-promoted separation of photo-generated electron (e-)-hole (h+) pairs. In addition, the photocatalytic activity of g-C3N4/rGO was pH sensitive with a much increased photodegrading rate at low pH values. The first order rate constant was 8.6 times that of pristine g-C3N4 at pH = 1.98. The pH sensitive behavior resulted from the promoted oxidation of h+ with RhB by the consumption of e- with the reaction of proton (H+) in which rGO acted as a good platform for transferring e- through its atomic sheets.
  • 加载中
    1. [1]

      [1] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76

    2. [2]

      [2] Wang X C, Blechert S, Antonietti M. ACS Catal, 2012, 2: 1596

    3. [3]

      [3] Wang Y, Wang X C, Antonietti M. Angew Chem Int Ed, 2012, 51: 68

    4. [4]

      [4] Chu Z Y, Yuan B, Yan T N. J Inorg Mater (楚增勇, 原博, 颜廷楠. 无机材料学报), 2014, 29: 785

    5. [5]

      [5] Shen K, Gondal M A, Siddique R G, Shi S, Wang S Q, Sun J B, Xu Q Y. Chin J Catal (沈凯, Gondal M A, Siddique R G, 施珊, 王斯琦, 孙江波, 徐庆宇. 催化学报), 2014, 35: 78

    6. [6]

      [6] Cao S W, Yu J G. J Phys Chem Lett, 2014, 5: 2101

    7. [7]

      [7] Chen X B, Mao S S. Chem Rev, 2007, 107: 2891

    8. [8]

      [8] Hou Y, Wen Z H, Cui S M, Guo X R, Chen J H. Adv Mater, 2013, 25: 6291

    9. [9]

      [9] Ge L, Han C C, Liu J. J Mater Chem, 2012, 22: 11843

    10. [10]

      [10] Dong G H, Zhao K, Zhang L. Chem Commun, 2012, 48: 6178

    11. [11]

      [11] Zhang J S, Zhang G G, Chen X F, Lin S, Möhlmann L, Dołęga G, Lipner G, Antonietti M, Blechert S, Wang X C. Angew Chem Int Ed, 2012, 51: 3183

    12. [12]

      [12] Groenewolt M, Antonietti M. Adv Mater, 2005, 17: 1789

    13. [13]

      [13] Yuan B, Chu Z Y, Li G Y, Jiang Z H, Hu T J, Wang Q H, Wang C H. J Mater Chem C, 2014, 2: 8212

    14. [14]

      [14] Xu J, Wang Y J, Zhu Y F. Langmuir, 2013, 29: 10566

    15. [15]

      [15] Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C, Ajayan P M. Adv Mater, 2013, 25: 2452

    16. [16]

      [16] Liu C, Jing L Q, He L M, Luan Y B, Li C M. Chem Commun, 2014, 50: 1999

    17. [17]

      [17] Cui Y J. Chin J Catal (崔言娟. 催化学报), 2015, 36: 372

    18. [18]

      [18] Zhang L, Jing D W, She X L, Liu H W, Yang D J, Lu Y, Li J, Zheng Z F, Guo L J. J Mater Chem A, 2014, 2: 2071

    19. [19]

      [19] Cheng N Y, Tian J Q, Liu Q, Ge C J, Qusti A H, Asiri A M, Al-Youbi A O, Sun X P. ACS Appl Mater Interfaces, 2013, 5: 6815

    20. [20]

      [20] Yan H J, Huang Y. Chem Commun, 2011, 47: 4168

    21. [21]

      [21] Li Y B, Zhang H M, Liu P R, Wang D, Li Y, Zhao H J. Small, 2013, 9: 3336

    22. [22]

      [22] Li X H, Chen J S, Wang X G, Sun J H, Antonietti M. J Am Chem Soc, 2011, 133: 8074

    23. [23]

      [23] Liu Q, Zhang J Y. Langmuir, 2013, 29: 3821

    24. [24]

      [24] Min Y L, Qi X F, Xu Q J, Chen Y C. CrystEngComm, 2014, 16: 1287

    25. [25]

      [25] Xiang Q J, Yu J G, Jaroniec M. J Phys Chem C, 2011, 115: 7355

    26. [26]

      [26] Liao G Z, Chen S, Quan X, Yu H T, Zhao H M. J Mater Chem, 2012, 22: 2721

    27. [27]

      [27] Suryawanshi A, Dhanasekaran P, Mhamane D, Kelkar S, Patil S, Gupta N, Ogale S. Int J Hydrogen Energy, 2012, 37: 9584

    28. [28]

      [28] Kang Y, Chu Z Y, Zhang D J, Li G Y, Jiang Z H, Cheng H F, Li X D. Carbon, 2013, 61: 200

    29. [29]

      [29] Dong F, Wang Z Y, Sun Y J, Ho W K, Zhang H D. J Colloid Interface Sci, 2013, 401: 70

    30. [30]

      [30] Chu Z Y, Kang Y, Jiang Z H, Li G Y, Hu T J, Wang J, Zhou Z F, Li Y H, Wang X J. RSC Adv, 2014, 4: 26855

    31. [31]

      [31] Yan S C, Li Z S, Zou Z G. Langmuir, 2010, 26: 3894

    32. [32]

      [32] Liu W, Wang M L, Xu C X, Chen S F, Fu X L. J Mol Catal A, 2013, 368-369: 9

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(0)
  • Abstract views(279)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return