Citation: Javad Hosseini, Mehdi Abdolmaleki, Hamid Reza Pouretedal, Mohammad Hossein Keshavarz. Electrocatalytic activity of porous nanostructured Fe/Pt-Fe electrode for methanol electrooxidation in alkaline media[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1029-1034. doi: 10.1016/S1872-2067(15)60841-5 shu

Electrocatalytic activity of porous nanostructured Fe/Pt-Fe electrode for methanol electrooxidation in alkaline media

  • Corresponding author: Hamid Reza Pouretedal, 
  • Received Date: 23 December 2014
    Available Online: 17 March 2015

    Fund Project:

  • An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodeposition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.
  • 加载中
    1. [1]

      [1] Giz M J, Camara G A. J Electroanal Chem, 2009, 625: 117

    2. [2]

      [2] Kowal A, Gojkovic S L, Lee K S, Olszewski P, Sung Y E. Electrochem Commun, 2009, 11: 724

    3. [3]

      [3] Guo D J, Qiu X P, Chen L Q, Zhu W T. Carbon, 2009, 47: 1680

    4. [4]

      [4] Lobato J, Canizares P, Rodrigo M A, Linares J J. Appl Catal B, 2009, 91: 269

    5. [5]

      [5] Bergamaski K, Gonzalez E R, Nart F C. Electrochim Acta, 2008, 53: 4396

    6. [6]

      [6] Jiang L, Hsu A, Chu D, Chen R. Int J Hydrogen Energy, 2010, 35: 365

    7. [7]

      [7] Kadirgan F, Beyhan S, Atilan T. Int J Hydrogen Energy, 2009, 34: 4312

    8. [8]

      [8] Li J, Tian W P, Shi L. Catal Lett, 2011, 141: 565

    9. [9]

      [9] Du C Y, Chen M, Wang W G, Yin G P, Shi P F. Electrochem Commun, 2010, 12: 843

    10. [10]

      [10] Lv X Y, Xu Z H, Yan Z X, Li X H. Electrocatalysis, 2011, 2(2): 82

    11. [11]

      [11] Qi Z, Geng H R, Wang X G, Zhao C C, Ji H, Zhang C, Xu J L, Zhang Z H. J Power Sources, 2011, 196: 5823

    12. [12]

      [12] Antolini E, Salgado J R C, Gonzalez E R. J Power Sources, 2006, 155: 161

    13. [13]

      [13] Du Y S, Su J, Luo W, Cheng G Z. ACS Appl Mater Interfaces, 2015, 7: 1031

    14. [14]

      [14] Zhao Y C, Yang X L, Tian J N, Wang F Y, Zhan L. Int J Hydrogen Energy, 2010, 35: 3249

    15. [15]

      [15] Huang T, Liu J L, Li R S, Cai W B, Yu A S. Electrochem Commun, 2009, 11: 643

    16. [16]

      [16] Xu Z H, Hu J C, Yan Z X, Yang S B, Zhou J, Lu W. Electrochim Acta, 2009, 54: 3548

    17. [17]

      [17] Hosseini M G, Abdolmaleki M, Ashrafpoor S. Chin J Catal (催化学报), 2012, 33: 1817

    18. [18]

      [18] Solmaz R, Döner A, Şahin İ, Yüce A O, Kardaş G, Yazıcı B, Erbil M. Int J Hydrogen Energy, 2009, 34: 7910

    19. [19]

      [19] Hosseini M G, Abdolmaleki M. Int J Hydrogen Energy, 2013, 38: 5449

    20. [20]

      [20] Hosseini M G, Abdolmaleki M, Ashrafpoor S. J Appl Electrochem, 2012, 42: 153

    21. [21]

      [21] Qiu C C, Shang R, Xie Y F, Bu Y R, Li C Y, Ma H Y. Mater Chem Phys, 2010, 120: 323

    22. [22]

      [22] Xu C W, Liu Y L, Yuan D S. Int J Electrochem Sci, 2007, 2: 674

    23. [23]

      [23] Lee Y W, Han S B, Park K W. Electrochem Commun, 2009, 11: 1968

    24. [24]

      [24] Singh R N, Singh A, Anindita. Int J Hydrogen Energy, 2009, 34: 2052

    25. [25]

      [25] Liu J P, Ye J Q, Xu C W, Jiang S P, Tong Y X. Electrochem Commun, 2007, 9: 2334

    26. [26]

      [26] Xu M W, Gao G Y, Zhou W J, Zhang K F, Li H L. J Power Sources, 2008, 175: 217

    27. [27]

      [27] Liang Z X, Zhao T S, Xu J B, Zhu L D. Electrochim Acta, 2009, 54: 2203

    28. [28]

      [28] Beden B, Kadirgan F, Lamy C, Leger J M. J Electroanal Chem Interf Electrochem, 1982, 142: 171

    29. [29]

      [29] Hosseini M G, Abdolmaleki M, Ashrafpoor S. Chin J Catal (催化学报), 2013, 34: 1712 Telli E, Solmaz R, Kardaş G. Russ J Electrochem, 2011, 47: 811

  • 加载中
    1. [1]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    7. [7]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    8. [8]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    9. [9]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    10. [10]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    11. [11]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    12. [12]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    13. [13]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    14. [14]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    15. [15]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    16. [16]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    17. [17]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    18. [18]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    19. [19]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    20. [20]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

Metrics
  • PDF Downloads(2)
  • Abstract views(302)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return