Citation: Kazem Karami, Samaneh Dehghani Najvani, Nasrin Haghighat Naeini, Pablo Hervés. Palladium particles from oxime-derived palladacycle supported on Fe3O4/oleic acid as a catalyst for the copper-free Sonogashira cross-coupling reaction[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1047-1053. doi: 10.1016/S1872-2067(15)60837-3 shu

Palladium particles from oxime-derived palladacycle supported on Fe3O4/oleic acid as a catalyst for the copper-free Sonogashira cross-coupling reaction

  • Corresponding author: Kazem Karami, 
  • Received Date: 7 January 2015
    Available Online: 4 March 2015

    Fund Project:

  • An oxime-derived palladacycle was synthesized using 4-bromobenzoxime and pyridine in CHCl3, and characterized by FT-IR and 1H NMR spectroscopy. This Pd complex was supported on Fe3O4/oleic acid and shown to be an efficient catalyst for the copper-free Sonogashira cross-coupling reaction of various aryl halides with phenylacetylene in air and in ethanol or mixed aqueous medium. The oxime-derived palladacycle gave highly active palladium nanoparticles for the organic synthesis. The coupling products were obtained in high yields with low Pd loading and the heterogeneous catalyst can be separated by an external magnet and reused six times without loss of its activity. The characterization of the catalyst was carried out by XRD, SEM and TEM. Both TEM and XRD revealed that the palladium nanoparticles were well dispersed with diameters from 5 to 10 nm and average size 9.97 nm.
  • 加载中
    1. [1]

      [1] Dupont J, Consorti C S,Spencer J. Chem Rev, 2005, 105: 2527

    2. [2]

      [2] Xu K, Yang F, Zhang G D, Wu Y J. Green Chem, 2013, 15: 1055

    3. [3]

      [3] Catellani M,Motti E, Della Ca N. Acc Chem Res, 2008, 41: 1512

    4. [4]

      [4] Dupont J, Pfeffer M. Palladacycles: Synthesis, Characterization and Applications. Weinheim: Wiley VCH, 2008

    5. [5]

      [5] de Vries J G. Dalton Trans, 2006: 421

    6. [6]

      [6] Wang X R, Lu F H, Song Y, Lu Z L. Tetrahedron Lett, 2012, 53: 589

    7. [7]

      [7] Rocaboy C, Gladysz J A. Org Lett, 2002, 4: 1993

    8. [8]

      [8] Alonso D A, Nájera C. Chem Soc Rev, 2010, 39: 2891

    9. [9]

      [9] Chinchilla R, Nájera C. Chem Soc Rev, 2011, 40: 5084

    10. [10]

      [10] Polshettiwar V, Molnar A. Tetrahedron, 2007, 63: 6949

    11. [11]

      [11] Karimi B, Zamani A, Abedi S, Clark J H. Green Chem, 2009, 11: 109

    12. [12]

      [12] Tamami B, Ghasemi S. J Mol Catal A, 2010, 322: 98

    13. [13]

      [13] Karami K, Moghadam Z K,Hosseini-Kharat M. Catal Commun, 2014, 43: 25

    14. [14]

      [14] Sun J T, Hong C Y, Pan C Y. Polym Chem, 2011, 2: 998

    15. [15]

      [15] Bernini R, Cacchi S, Fabrizi G, Forte G, Petrucci F, Prastaro A, Niembro S, Shafir A, Vallribera A. Green Chem, 2010, 12: 150

    16. [16]

      [16] Su F Z, Liu Y M, Wang L C, Cao Y, He H Y, Fan K N. Angew Chem Int Ed, 2008, 47: 334

    17. [17]

      [17] Calo V, Nacci A, Monopoli A, Montingelli F. J Org Chem, 2005, 70: 6040

    18. [18]

      [18] Tang S K, Wang L P, Zhang Y, Li S F, Tian S J, Wang B Y. Fuel Process Technol, 2012, 95: 84

    19. [19]

      [19] Niu H Y, Zhang D, Meng Z F, Cai Y Q. J Hazard Mater, 2012, 227-228: 195

    20. [20]

      [20] Ke Y, Zeng Y, Pu X L, Wu X, Li L F, Zhu Z H, Yu Y. RSC Adv, 2012, 2: 5676

    21. [21]

      [21] Li G P, Mao L Q. RSC Adv, 2012, 2: 5108

    22. [22]

      [22] Liu J, Zhou Y C, Liu F, Liu C P, Wang J B, Pan Y, Xue D F. RSC Adv, 2012, 2: 2262

    23. [23]

      [23] Ai L H, Zeng C M, Wang Q M. Catal Commun, 2011, 14: 68

    24. [24]

      [24] Abu-Rezig R, Alper H, Wang D S, Post M L. J Am Chem Soc, 2006, 128: 5279

    25. [25]

      [25] Liu H F, Jia Z G, Ji S F, Zheng Y Y, Li M, Yang H. Catal Today, 2011, 175: 293

    26. [26]

      [26] Parella R, Srinivasarao N, Babu A. Catal Commun, 2012, 29: 118

    27. [27]

      [27] Subba Reddy B V, Siva Krishna A, Ganesh A V, Narayana Kumar G G K S. Tetrahedron Lett, 2011, 52: 1359

    28. [28]

      [28] Senapati K K, Roy S, Borgohain C, Phukan P. J Mol Catal A, 2012, 352: 128

    29. [29]

      [29] Lee D, Lee J, Lee H, Jin S, Hyeon T, Kim B M. Adv Synth Catal, 2006, 348: 41

    30. [30]

      [30] Kong A G, Wang P, Zhang H Q, Yang F, Huang S P, Shan Y K. Appl Catal A, 2012, 417-418: 183

    31. [31]

      [31] Li D, Jiang D L, Chen M, Xie J M, Wu Y Y, Dang S C, Zhang J X. Mater Lett, 2010, 64: 2462

    32. [32]

      [32] Jana M, Khanra P, Murmu N C, Samanta P, Lee J H, Kuila T. Phys Chem Chem Phys, 2014, 16: 7618

    33. [33]

      [33] Natarajan S K, Selvaraj S. RSC Adv, 2014, 4: 14328

    34. [34]

      [34] Wu N Q, Fu L, Su M, Aslam M, Wong K C, Dravid V P. Nano Lett, 2004, 4: 383

    35. [35]

      [35] Zhong H, Wang J Y, Li L Y, Wang R H. Dalton Trans, 2014, 43: 2098

    36. [36]

      [36] Negishi E I, Anastasia L. Chem Rev, 2003, 103: 1979

    37. [37]

      [37] Nicolaou K C, Bulger P G, Sarlah D. Angew Chem Int Ed, 2005, 44: 4442

    38. [38]

      [38] Doucet H, Hierso J C. Angew Chem Int Ed, 2007, 46: 834

    39. [39]

      [39] Chinchilla R, Najera C. Chem Rev, 2007, 107: 874

    40. [40]

      [40] Bertus P, Fecourt F, Bauder C, Pale P. New J Chem, 2004, 28: 12

    41. [41]

      [41] Li P, Teng B T, Jin F G, Li X S, Zhu W D, Xie J W. Org Biomol Chem, 2012, 10: 244

    42. [42]

      [42] Yang K, Peng H B, Wen Y H, Li N. Appl Surf Sci, 2010, 256: 3093

    43. [43]

      [43] Li Y Z, Ma F Y, Su X T, Sun C, Liu J C, Sun Z Q, Hou Y L. Catal Commun, 2012, 26: 231

    44. [44]

      [44] Cai M Z, Sha J C, Xu Q H. Tetrahedron, 2007, 63: 4642

    45. [45]

      [45] Bakherad M, Keivanloo A, Bahramian B, Jajarmi S. Appl Catal A, 2010, 390: 135

    46. [46]

      [46] Samantaray M K, Shaikh M M, Ghosh P. J Organomet Chem, 2009, 694: 3477

    47. [47]

      [47] Li H, Zhu Z H, Li H X, Li P, Zhou X G. J Colloid Interf Sci, 2010, 349: 613

    48. [48]

      [48] Bahramian B, Bakherad M, Keivanloo A, Bakherad Z, Karrabi B. Appl Organomet Chem, 2011, 25: 420

  • 加载中
    1. [1]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    2. [2]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    3. [3]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    4. [4]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    5. [5]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    6. [6]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    7. [7]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    8. [8]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    9. [9]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    10. [10]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    11. [11]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    12. [12]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    13. [13]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    14. [14]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    15. [15]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    16. [16]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    17. [17]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    18. [18]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    19. [19]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    20. [20]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

Metrics
  • PDF Downloads(0)
  • Abstract views(331)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return