Citation: Afşin Y. Çetinkaya, Emre Oğuz Köroğlu, Neslihan Manav Demir, Derya Yılmaz Baysoy, Bestamin Özkaya, Mehmet Çakmakçı. Electricity production by a microbial fuel cell fueled by brewery wastewater and the factors in its membrane deterioration[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1068-1076. doi: 10.1016/S1872-2067(15)60833-6 shu

Electricity production by a microbial fuel cell fueled by brewery wastewater and the factors in its membrane deterioration

  • Corresponding author: Afşin Y. Çetinkaya, 
  • Received Date: 29 December 2014
    Available Online: 1 March 2015

    Fund Project: This work was supported by Scientific Research Project Coordination of Yildiz Technical University (2012-05-02-KAP06). (2012-05-02-KAP06)

  • Electricity production from brewery wastewater using dual-chamber microbial fuel cells (MFCs) with a tin-coated copper mesh in the anode was investigated by changing the hydraulic retention time (HRT). The MFCs were fed with wastewater samples from the inlet (inflow, MFC-1) and outlet (outflow, MFC-2) of an anaerobic digester of a brewery wastewater treatment plant. Both chemical oxygen demand removal and current density were improved by decreasing HRT. The best MFC performance was with an HRT of 0.5 d. The maximum power densities of 8.001 and 1.843 µW/cm2 were obtained from reactors MFC-1 and MFC-2, respectively. Microbial diversity at different conditions was studied using PCR-DGGE profiling of 16S rRNA fragments of the microorganisms from the biofilm on the anode electrode. The MFC reactor had mainly Geobacter, Shewanella, and Clostridium species, and some bacteria were easily washed out at lower HRTs. The fouling characteristics of the MFC Nafion membrane and the resulting degradation of MFC performance were examined. The ion exchange capacity, conductivity, and diffusivity of the membrane decreased significantly after fouling. The morphology of the Nafion membrane and MFC degradation were studied using scanning electron microscopy and attenuated total reflection-Fourier transform infrared spectroscopy.
  • 加载中
    1. [1]

      [1] Ozkaya B, Akoglu B, Karadag D, Aci G, Taskan E, Hasar E. Bioprocess Biosyst Eng, 2012, 35: 1219

    2. [2]

      [2] Fernando E, Keshavarz T, Kyazze G. Bioresour Technol, 2013, 127: 1

    3. [3]

      [3] Lin C W, Wu C H, Huang W T, Tsai S L. Fuel, 2015, 144: 1

    4. [4]

      [4] Yang G X, Sun Y M, Yuan Z H, Lü P M, Kong X Y, Li L H, Chen G Y, Lu T H. Chin J Catal (杨改秀, 孙永明, 袁振宏, 吕鹏梅, 孔晓英, 李连华, 陈冠益, 陆天虹. 催化学报), 2014, 35: 770

    5. [5]

      [5] Kiely P D, Rader G, Regan J M, Logan B E. Bioresour Technol, 2011, 102: 361

    6. [6]

      [6] He Z, Wagner N, Minteer S D, Angenent L T. Environ Sci Technol, 2006, 40: 5212

    7. [7]

      [7] Koroglu E O, Yilmaz Baysoy D, Cetinkaya A Y, Ozkaya B, Çakmakci M. Biomass Bioenergy, 2014, 69: 58

    8. [8]

      [8] Wen Q, Wu Y, Zhao L X, Sun Q. Fuel, 2010, 89: 1381

    9. [9]

      [9] Venkata Mohan S, Mohanakrishna G, Velvizhi G, Babu V L, Sarma P N. Biochem Eng J, 2010, 51: 32

    10. [10]

      [10] Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Environ Sci Technol, 2006, 40: 5193

    11. [11]

      [11] Kim H J, Park H S, Hyun M S, Chang I S, Kim M, Kim B H. Enzyme Microb Technol, 2002, 30: 145

    12. [12]

      [12] Koroglu E O, Ozkaya B, Cetinkaya A Y. Int J Energy Sci, 2014, 4: 28

    13. [13]

      [13] Koroglu E O, Ozkaya B, Denktas C, Cakmakci M. J Biosci Bioeng, 2014, 118: 672

    14. [14]

      [14] Ghasemi M, Daud W R W, Ismail M, Rahimnejad M, Ismail A F, Leong J X, Miskan M, Ben Liew K. Int J Hydrog Energy, 2013, 38: 5480

    15. [15]

      [15] Cheng K, He D P, Peng T, Lv H F, Pan M, Mu S C. Electrochim Acta, 2014, 132: 356

    16. [16]

      [16] Choi T H, Won Y B, Lee J W, Shin D W, Lee Y M, Kim M, Park H B. J Power Sources, 2012, 220: 269

    17. [17]

      [17] Koskinen P E P, Lay C H, Puhakka J A, Lin P J, Wu S Y, Örlygsson J, Lin C Y. Biotechnol Bioeng, 2008, 101: 665

    18. [18]

      [18] Koskinen P E P, Kaksonen A H, Puhakka J A. Biotechnol Bioeng, 2007, 97: 742

    19. [19]

      [19] Behera M, Ghangrekar M M. Bioresour Technol, 2009, 100: 5114

    20. [20]

      [20] Yates M D, Kiely P D, Call D F, Rismani-Yazdi H, Bibby K, Peccia J, Regan J M, Logan B E. ISME J, 2012, 6: 2002

    21. [21]

      [21] Jadhav G S, Ghangrekar M M. Bioresour Technol, 2009, 100: 717

    22. [22]

      [22] Yu J, Park Y, Kim B, Lee T. Bioprocess Biosyst Eng, 2015, 38: 85

    23. [23]

      [23] Chae K J, Choi M J, Lee J W, Kim K Y, Kim I S. Bioresour Technol, 2009, 100: 3518

    24. [24]

      [24] Dryden S K, He Z, Ley R E, Angenent L T. Unpublished. http:// getentry.ddbj.nig.ac.jp/getentry/na/EF515697/?filetype=html

    25. [25]

      [25] Morita M, Malvankar N S, Franks A E, Summers Z M, Giloteaux L, Rotaru A E, Rotaru C, Vargas M, Lovley D R. Unpublished. http:// getentry.ddbj.nig.ac.jp/getentry/na/FR823540/?filetype=html

    26. [26]

      [26] Uria N, Mas J. Unpublished. http://getentry.ddbj.nig.ac.jp/ getentry/na/HE856389-HE856491/?filetype=html&limit=100

    27. [27]

      [27] Zhang X. Unpublished. http://getentry.ddbj.nig.ac.jp/getentry/ na/JQ724353/?filetype=html

    28. [28]

      [28] Ludvigsson M, Lindgren J, Tegenfeldt J. Electrochim Acta, 2000, 45: 2267

    29. [29]

      [29] Xu L, Wang J N, Meng Y, Li A M. Chin Chem Lett, 2012, 23: 105

    30. [30]

      [30] Di Noto V, Piga M, Giffin G A, Lavina S, Smotkin E S, Sanchez J Y, Iojoiu C. J Phys Chem C, 2012, 116: 1370

    31. [31]

      [31] Wu Y, Guo J, Yang W L, Wang C C, Fu S K. Polymer, 2006, 47: 5287

    32. [32]

      [32] Danilczuk M, Lin L, Schlick S, Hamrock S J, Schaberg M S. J Power Sources, 2011, 196: 8216

    33. [33]

      [33] Shin S J, Balabanovich A I, Kim H, Jeong J, Song J, Kim T K. J Power Sources, 2009, 191: 312

    34. [34]

      [34] Barbora L, Singh R, Shroti N, Verma A. Mater Chem Phys, 2010, 122: 211

    35. [35]

      [35] Belfer S, Fainchtain R, Purinson Y, Kedem O. J Membr Sci, 2000, 172: 113

  • 加载中
    1. [1]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    2. [2]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    3. [3]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    4. [4]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    5. [5]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    6. [6]

      Yiming FangHuimin GaoKaiting ChengLiang BaiZhengtong LiYadong ZhaoXingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925

    7. [7]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    8. [8]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    9. [9]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    10. [10]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    11. [11]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    12. [12]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    13. [13]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    14. [14]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    15. [15]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    16. [16]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    17. [17]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    18. [18]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    19. [19]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    20. [20]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

Metrics
  • PDF Downloads(0)
  • Abstract views(248)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return