Citation: Shuai Zou, Zaihui Fu, Chao Xiang, Wenfeng Wu, Senpei Tang, Yachun Liu, Dulin Yin. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1077-1085. doi: 10.1016/S1872-2067(15)60827-0 shu

Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability

  • Corresponding author: Zaihui Fu, 
  • Received Date: 14 January 2015
    Available Online: 27 February 2015

    Fund Project: 国家自然科学基金(20873040) (20873040) 高等学校博士学科点专项科研基金(20124306110005) (20124306110005) 湖南省自然科学基金(10JJ2007, 14JJ2148) (10JJ2007, 14JJ2148)

  • Carbon-coated CdS (CdS@C) nanoparticles were conveniently prepared by a one-step hydrothermal carbonization method at temperature as low as 130 ℃, in which cadmium acetate and glucose were used as the cadmium and carbon sources, respectively, and thiourea was used as the sulfur source and catalyst for the hydrothermal carbonization of glucose. The prepared CdS@C particles possess a smaller size, better dispersion, and more uniform distribution than pure CdS particles prepared under the same conditions. Furthermore, the hydrothermal carbonization of glucose easily induces the prior formation of metastable cubic CdS crystals. In addition, the carbonaceous species coated on the surface of CdS expands the range of absorption light and slightly decreases the band gap of CdS, as well as reduces the recombination of the photogenerated electron-hole pairs of CdS and its photo-oxidative corrosion, which can improve the photocatalytic activity and stability of CdS for the photo-oxidative degradation of methyl orange in aqueous solution under visible light irradiation.
  • 加载中
    1. [1]

      [1] Zhu L, Jo S B, Ye S, Ullah K, Oh W C. Chin J Catal (催化学报), 2014, 35: 1825

    2. [2]

      [2] Li X Y, Chen G H, Po-Lock Y, Kutal C. J Chem Technol Biotechnol, 2003, 78: 1246

    3. [3]

      [3] Almeida A R, Moulijn J A, Mul G. J Phys Chem C, 2008, 112: 1552

    4. [4]

      [4] Hamid S B A, Tan T L, Lai C W, Samsudin E M. Chin J Catal (催化学报), 2014, 35: 2014

    5. [5]

      [5] Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Appl Catal B, 2001, 32: 215

    6. [6]

      [6] Taranto J, Frochot D, Pichat P. Ind Eng Chem Res, 2007, 46: 7611

    7. [7]

      [7] Khan Z, Chetia T R, Vardhaman A K, Barpuzary D, Sastri C V, Qureshi M. RSC Adv, 2012, 2: 12122

    8. [8]

      [8] Cao J, Sun J Z, Hong J, Li H Y, Chen H Z, Wang M. Adv Mater, 2004, 16: 84

    9. [9]

      [9] Karan S, Mallik B. J Phys Chem C, 2007, 111: 16734

    10. [10]

      [10] Podborska A, Gaweł B, Pietrzak Ł, Szymańska I B, Jeszka J K, Łasocha W, Szaciłowski K. J Phys Chem C, 2009, 113: 6774

    11. [11]

      [11] Wang S M, Liu P, Wang X X, Fu X Z. Langmuir, 2005, 21: 11969

    12. [12]

      [12] Li X L, Jia Y, Cao A Y. ACS Nano, 2010, 4: 506

    13. [13]

      [13] Cao M, Li L, Zhang B L, Huang J, Tang K, Cao H, Sun Y, Shen Y. J Alloys Compd, 2012, 530: 81

    14. [14]

      [14] Yang H H, Kershaw S V, Wang Y, Gong X Z, Kalytchuk S, Rogach A L, Teoh W Y. J Phys Chem C, 2013, 117: 20406

    15. [15]

      [15] Ferancová A, Rengaraj S, Kim Y, Labuda J, Sillanpää M. Biosens Bioelectron, 2010, 26: 314

    16. [16]

      [16] Hu Y, Liu Y, Qian H S, Li Z Q, Chen J F. Langmuir, 2010, 26: 18570

    17. [17]

      [17] Yan J J, Wang K, Xu H, Qian J, Liu W, Yang X W, Li H M. Chin J Catal (严佳佳, 王坤, 许晖, 钱静, 刘巍, 杨兴旺, 李华明. 催化学报), 2013, 34, 1876.

    18. [18]

      [18] Mi Q, Chen D Q, Hu J C, Huang Z X, Li J L. Chin J Catal (米倩, 陈带全, 胡军成, 黄正喜, 李金林. 催化学报), 2013, 34: 2138

    19. [19]

      [19] Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253

    20. [20]

      [20] Silva L A, Ryu S Y, Choi J, Choi W, Hoffmann M R. J Phys Chem C, 2008, 112: 12069

    21. [21]

      [21] Boxi S S, Paria S. RSC Adv, 2014, 4: 37752

    22. [22]

      [22] Luo M, Liu Y, Hu J C, Liu H, Li J L. ACS Appl Mater Interfaces, 2012, 4: 1813

    23. [23]

      [23] Park C Y, Ghosh T, Meng Z D, Kefayat U, Vikram N, Oh W C. Chin J Catal (催化学报), 2013, 34: 711

    24. [24]

      [24] Kar A, Kundu S, Patra A. RSC Adv, 2012, 2: 10222

    25. [25]

      [25] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal, 2009, 266: 165

    26. [26]

      [26] Li Y Y, Liu J P, Huang X T, Yu J G. Dalton Trans, 2010, 39: 3420

    27. [27]

      [27] Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Appl Catal B, 2007, 69: 138

    28. [28]

      [28] Ge S X, Jia H M, Zhao H X, Zheng Z, Zhang L Z. J Mater Chem, 2010, 20: 3052

    29. [29]

      [29] Hu Y, Gao X H, Yu L, Wang Y R, Ning J Q, Xu S J, Lou X W. Angew Chem Int Ed, 2013, 52: 5636

    30. [30]

      [30] Xu C K, Killmeyer R, Gray M L, Khan S U M. Appl Catal B, 2006, 64: 312

    31. [31]

      [31] Lee D K, Cho I S, Lee S, Bae S T, Noh J H, Kim D W, Hong K S. Mater Chem Phys, 2010, 119: 106

    32. [32]

      [32] Liang H W, Zhang W J, Ma Y N, Cao X, Guan Q F, Xu W P, Yu S H. ACS Nano, 2011, 5: 8148

    33. [33]

      [33] Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titiriciet M M. Adv Mater, 2010, 22: 813

    34. [34]

      [34] Wang G X, Liu H, Liu J, Qiao S Z, Lu G M, Munroe P, Ahn H. Adv Mater, 2010, 22: 4944

    35. [35]

      [35] Sun X M, Li Y D. Angew Chem Int Ed, 2004, 43: 597

    36. [36]

      [36] Sasikala G, Thilakan P, Subramanian C. Sol Energy Mater Sol Cells, 2000, 62: 275

    37. [37]

      [37] Fu H B, Pan C S, Yao W Q, Zhu Y F. J Phys Chem B, 2005, 109: 22432

    38. [38]

      [38] Weller H. Angew Chem Int Ed, 1993, 32: 41

    39. [39]

      [39] Unni C, Philip D, Smitha S L, Nissamudeen K M, Gopchandran K G. Spectrochim Acta A, 2009, 72: 827

    40. [40]

      [40] Shen S H, Guo L J, Chen X B, Ren F, Mao S S. Int J Hydrogen Energy, 2010, 35: 7110

    41. [41]

      [41] Yang F, Yan N N, Huang S, Sun Q, Zhang L Z, Yu Y. J Phys Chem C, 2012, 116: 9078

    42. [42]

      [42] Liu Y, Zhou M J, Hu Y, Qian H S, Chen J F, Hu X. CrystEngComm, 2012, 14: 4507

    43. [43]

      [43] Yu J G, Ma T T, Liu S W. Phys Chem Chem Phys, 2011, 13: 3491

    44. [44]

      [44] Zhong J, Chen F, Zhang J L. J Phys Chem C, 2010, 114: 933

    45. [45]

      [45] Mau A W H, Huang C B, Kakuta N, Bard A J, Campion A, Fox M A, White J M, Webber S E. J Am Chem Soc, 1984, 106: 6537

    46. [46]

      [46] Zhang L W, Fu H B, Zhu Y F. Adv Funct Mater, 2008, 18: 2180

    47. [47]

      [47] Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. J Phys Chem C, 2007, 111: 17527

    48. [48]

      [48] Peng Q, Dong Y J, Li Y D. Angew Chem Int Ed, 2003, 42: 3027

    49. [49]

      [49] Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N. Bioresour Technol, 1996, 58: 197

    50. [50]

      [50] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew Chem Int Ed, 2010, 49: 4430

    51. [51]

      [51] Kang Z H, Tsang C H A, Wong N B, Zhang Z D, Lee S T. J Am Chem Soc, 2007, 129: 12090

    52. [52]

      [52] Kang Z H, Liu Y, Tsang C H A, Ma D D, Fan X, Wong N B, Lee S T. Adv Mater, 2009, 21: 661

    53. [53]

      [53] Wang W, Gu B H, Liang L Y, Hamilton W. J Phys Chem B, 2003, 107: 3400

    54. [54]

      [54] Sato S. Langmuir, 1988, 4: 1156

    55. [55]

      [55] Li Y Y, Liu J P, Huang X T. Nanoscale Res Lett, 2008, 3: 365

    56. [56]

      [56] Liu Y, Yu Y X, Zhang W D. J Alloys Compd, 2013, 569: 102

  • 加载中
    1. [1]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    13. [13]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    14. [14]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    18. [18]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    19. [19]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    20. [20]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

Metrics
  • PDF Downloads(1)
  • Abstract views(243)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return