Citation:
Shuai Zou, Zaihui Fu, Chao Xiang, Wenfeng Wu, Senpei Tang, Yachun Liu, Dulin Yin. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability[J]. Chinese Journal of Catalysis,
;2015, 36(7): 1077-1085.
doi:
10.1016/S1872-2067(15)60827-0
-
Carbon-coated CdS (CdS@C) nanoparticles were conveniently prepared by a one-step hydrothermal carbonization method at temperature as low as 130 ℃, in which cadmium acetate and glucose were used as the cadmium and carbon sources, respectively, and thiourea was used as the sulfur source and catalyst for the hydrothermal carbonization of glucose. The prepared CdS@C particles possess a smaller size, better dispersion, and more uniform distribution than pure CdS particles prepared under the same conditions. Furthermore, the hydrothermal carbonization of glucose easily induces the prior formation of metastable cubic CdS crystals. In addition, the carbonaceous species coated on the surface of CdS expands the range of absorption light and slightly decreases the band gap of CdS, as well as reduces the recombination of the photogenerated electron-hole pairs of CdS and its photo-oxidative corrosion, which can improve the photocatalytic activity and stability of CdS for the photo-oxidative degradation of methyl orange in aqueous solution under visible light irradiation.
-
-
-
[1]
[1] Zhu L, Jo S B, Ye S, Ullah K, Oh W C. Chin J Catal (催化学报), 2014, 35: 1825
-
[2]
[2] Li X Y, Chen G H, Po-Lock Y, Kutal C. J Chem Technol Biotechnol, 2003, 78: 1246
-
[3]
[3] Almeida A R, Moulijn J A, Mul G. J Phys Chem C, 2008, 112: 1552
-
[4]
[4] Hamid S B A, Tan T L, Lai C W, Samsudin E M. Chin J Catal (催化学报), 2014, 35: 2014
-
[5]
[5] Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Appl Catal B, 2001, 32: 215
-
[6]
[6] Taranto J, Frochot D, Pichat P. Ind Eng Chem Res, 2007, 46: 7611
-
[7]
[7] Khan Z, Chetia T R, Vardhaman A K, Barpuzary D, Sastri C V, Qureshi M. RSC Adv, 2012, 2: 12122
-
[8]
[8] Cao J, Sun J Z, Hong J, Li H Y, Chen H Z, Wang M. Adv Mater, 2004, 16: 84
-
[9]
[9] Karan S, Mallik B. J Phys Chem C, 2007, 111: 16734
-
[10]
[10] Podborska A, Gaweł B, Pietrzak Ł, Szymańska I B, Jeszka J K, Łasocha W, Szaciłowski K. J Phys Chem C, 2009, 113: 6774
-
[11]
[11] Wang S M, Liu P, Wang X X, Fu X Z. Langmuir, 2005, 21: 11969
-
[12]
[12] Li X L, Jia Y, Cao A Y. ACS Nano, 2010, 4: 506
-
[13]
[13] Cao M, Li L, Zhang B L, Huang J, Tang K, Cao H, Sun Y, Shen Y. J Alloys Compd, 2012, 530: 81
-
[14]
[14] Yang H H, Kershaw S V, Wang Y, Gong X Z, Kalytchuk S, Rogach A L, Teoh W Y. J Phys Chem C, 2013, 117: 20406
-
[15]
[15] Ferancová A, Rengaraj S, Kim Y, Labuda J, Sillanpää M. Biosens Bioelectron, 2010, 26: 314
-
[16]
[16] Hu Y, Liu Y, Qian H S, Li Z Q, Chen J F. Langmuir, 2010, 26: 18570
-
[17]
[17] Yan J J, Wang K, Xu H, Qian J, Liu W, Yang X W, Li H M. Chin J Catal (严佳佳, 王坤, 许晖, 钱静, 刘巍, 杨兴旺, 李华明. 催化学报), 2013, 34, 1876.
-
[18]
[18] Mi Q, Chen D Q, Hu J C, Huang Z X, Li J L. Chin J Catal (米倩, 陈带全, 胡军成, 黄正喜, 李金林. 催化学报), 2013, 34: 2138
-
[19]
[19] Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253
-
[20]
[20] Silva L A, Ryu S Y, Choi J, Choi W, Hoffmann M R. J Phys Chem C, 2008, 112: 12069
-
[21]
[21] Boxi S S, Paria S. RSC Adv, 2014, 4: 37752
-
[22]
[22] Luo M, Liu Y, Hu J C, Liu H, Li J L. ACS Appl Mater Interfaces, 2012, 4: 1813
-
[23]
[23] Park C Y, Ghosh T, Meng Z D, Kefayat U, Vikram N, Oh W C. Chin J Catal (催化学报), 2013, 34: 711
-
[24]
[24] Kar A, Kundu S, Patra A. RSC Adv, 2012, 2: 10222
-
[25]
[25] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal, 2009, 266: 165
-
[26]
[26] Li Y Y, Liu J P, Huang X T, Yu J G. Dalton Trans, 2010, 39: 3420
-
[27]
[27] Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Appl Catal B, 2007, 69: 138
-
[28]
[28] Ge S X, Jia H M, Zhao H X, Zheng Z, Zhang L Z. J Mater Chem, 2010, 20: 3052
-
[29]
[29] Hu Y, Gao X H, Yu L, Wang Y R, Ning J Q, Xu S J, Lou X W. Angew Chem Int Ed, 2013, 52: 5636
-
[30]
[30] Xu C K, Killmeyer R, Gray M L, Khan S U M. Appl Catal B, 2006, 64: 312
-
[31]
[31] Lee D K, Cho I S, Lee S, Bae S T, Noh J H, Kim D W, Hong K S. Mater Chem Phys, 2010, 119: 106
-
[32]
[32] Liang H W, Zhang W J, Ma Y N, Cao X, Guan Q F, Xu W P, Yu S H. ACS Nano, 2011, 5: 8148
-
[33]
[33] Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titiriciet M M. Adv Mater, 2010, 22: 813
-
[34]
[34] Wang G X, Liu H, Liu J, Qiao S Z, Lu G M, Munroe P, Ahn H. Adv Mater, 2010, 22: 4944
-
[35]
[35] Sun X M, Li Y D. Angew Chem Int Ed, 2004, 43: 597
-
[36]
[36] Sasikala G, Thilakan P, Subramanian C. Sol Energy Mater Sol Cells, 2000, 62: 275
-
[37]
[37] Fu H B, Pan C S, Yao W Q, Zhu Y F. J Phys Chem B, 2005, 109: 22432
-
[38]
[38] Weller H. Angew Chem Int Ed, 1993, 32: 41
-
[39]
[39] Unni C, Philip D, Smitha S L, Nissamudeen K M, Gopchandran K G. Spectrochim Acta A, 2009, 72: 827
-
[40]
[40] Shen S H, Guo L J, Chen X B, Ren F, Mao S S. Int J Hydrogen Energy, 2010, 35: 7110
-
[41]
[41] Yang F, Yan N N, Huang S, Sun Q, Zhang L Z, Yu Y. J Phys Chem C, 2012, 116: 9078
-
[42]
[42] Liu Y, Zhou M J, Hu Y, Qian H S, Chen J F, Hu X. CrystEngComm, 2012, 14: 4507
-
[43]
[43] Yu J G, Ma T T, Liu S W. Phys Chem Chem Phys, 2011, 13: 3491
-
[44]
[44] Zhong J, Chen F, Zhang J L. J Phys Chem C, 2010, 114: 933
-
[45]
[45] Mau A W H, Huang C B, Kakuta N, Bard A J, Campion A, Fox M A, White J M, Webber S E. J Am Chem Soc, 1984, 106: 6537
-
[46]
[46] Zhang L W, Fu H B, Zhu Y F. Adv Funct Mater, 2008, 18: 2180
-
[47]
[47] Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. J Phys Chem C, 2007, 111: 17527
-
[48]
[48] Peng Q, Dong Y J, Li Y D. Angew Chem Int Ed, 2003, 42: 3027
-
[49]
[49] Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N. Bioresour Technol, 1996, 58: 197
-
[50]
[50] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew Chem Int Ed, 2010, 49: 4430
-
[51]
[51] Kang Z H, Tsang C H A, Wong N B, Zhang Z D, Lee S T. J Am Chem Soc, 2007, 129: 12090
-
[52]
[52] Kang Z H, Liu Y, Tsang C H A, Ma D D, Fan X, Wong N B, Lee S T. Adv Mater, 2009, 21: 661
-
[53]
[53] Wang W, Gu B H, Liang L Y, Hamilton W. J Phys Chem B, 2003, 107: 3400
-
[54]
[54] Sato S. Langmuir, 1988, 4: 1156
-
[55]
[55] Li Y Y, Liu J P, Huang X T. Nanoscale Res Lett, 2008, 3: 365
-
[56]
[56] Liu Y, Yu Y X, Zhang W D. J Alloys Compd, 2013, 569: 102
-
[1]
-
-
-
[1]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[4]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[5]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[6]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[7]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[8]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[9]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[10]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[11]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[12]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[13]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[14]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[15]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[16]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[17]
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
-
[18]
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
-
[19]
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
-
[20]
Yuhang Jiang , Weijie Liu , Jiaqi Cai , Jiayue Chen , Yanping Ren , Pingping Wu , Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(243)
- HTML views(13)