Citation: E. S. Baeissa. Synthesis and characterization of sulfur-titanium dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation[J]. Chinese Journal of Catalysis, ;2015, 36(5): 698-704. doi: 10.1016/S1872-2067(14)60320-X shu

Synthesis and characterization of sulfur-titanium dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation

  • Corresponding author: E. S. Baeissa, 
  • Received Date: 1 February 2015
    Available Online: 27 February 2015

  • A sol-gel method was used to prepare TiO2 and sulfur-TiO2 (S-TiO2) nanocomposites, which were characterized by N2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescene, ultraviolet visible and transmission electron microscopy measurements. The photocatalytic performance of TiO2 and S-TiO2 nanocomposites, with respect to the photocatalytic oxidation of cyanide under visible light irradiation, was determined. The results reveal that S is well dispersed on the surface of TiO2 nanoparticles. Additionally, the surface area of the S-TiO2 nanocomposites was observed to be smaller than that of the TiO2 nanoparticles because of blocked pores caused by doping with S. The S-TiO2 nanocomposite (0.3 wt% S) exhibited the lowest band gap and the highest photocatalytic activity in the oxidation of cyanide. The photocatalytic performance of S-TiO2 (0.3 wt% S) nanocomposites was stable, even after the fifth reuse of the nanoparticles for the oxidation of cyanide.
  • 加载中
    1. [1]

      [1] Kim Y M, Cho H U, Lee D S, Park D, Park J M. Desalination, 2011, 279: 439

    2. [2]

      [2] Yeddou A R, Chergui S, Chergui A, Halet F, Hamza A, Nadjemi B, Ould-Dris A. Belkouch J. Miner Eng, 2011, 24: 788

    3. [3]

      [3] Bhattacharya P, Ghosh S, Mukhopadhyay A. J Environ Chem Eng, 2013, 1: 38

    4. [4]

      [4] Depci T. Chem Eng J, 2012, 181-182: 467

    5. [5]

      [5] Do S H, Jo Y H, Park H D, Kong S H. Chemosphere, 2012, 89: 1450

    6. [6]

      [6] Mohamed R M. Ceram Int, 2015, 41: 1197

    7. [7]

      [7] Mohamed R M, Baeissa E S. Appl Catal A, 2013, 464-465: 218

    8. [8]

      [8] Kao C M, Chen K F, Liu J K, Chou S M, Chen S C. Appl Microbiol Biotechnol, 2006, 71: 228

    9. [9]

      [9] Dash R R, Gaur A, Balomajumder C. J Hazard Mater, 2009, 163: 1

    10. [10]

      [10] Mohamed R M, McKinney D L, Sigmund W M. Mater Sci Eng R, 2012, 73: 1

    11. [11]

      [11] Mohamed R M, Mkhalid I A. J Alloy Comp, 2010, 501: 143

    12. [12]

      [12] Mohamed R M, Mkhalid I A. J Alloy Comp, 2010, 501: 301

    13. [13]

      [13] Pak D, Chang W. Environ Technol, 1997, 18: 557

    14. [14]

      [14] Mohamed R M, Baeissa E S. J Alloy Comp, 2013, 558: 68

    15. [15]

      [15] Zagury G J, Oudjehani K, Deschenes L. Sci Total Environ, 2004, 320: 211

    16. [16]

      [16] Sharma V K, Rivera W, Smith J O, O'Brien B. Environ Sci Technol, 1998, 32: 2608

    17. [17]

      [17] Bahnemann D. Solar Energy, 2004, 77: 445

    18. [18]

      [18] Chiang K, Amal R, Tran T. J Mol Catal A, 2003, 193: 285

    19. [19]

      [19] Liu H M, Imanishi A, Nakato Y. J Phys Chem C, 2007, 111: 8603

    20. [20]

      [20] Abdelaal M Y, Mohamed R M. J Alloy Comp, 2013, 576: 201

    21. [21]

      [21] Harraz F A, Abdel-Salam O E, Mostafa A A, Mohamed R M, Hanafy M. J Alloy Comp, 2013, 551: 1

    22. [22]

      [22] Mohamed R M. Desalination Water treatment, 2012, 50: 147

    23. [23]

      [23] Mohamed R M, Aazam E S. Appl Catal A, 2014, 480: 100

    24. [24]

      [24] Mohamed R M, Aazam E S. J Alloy Comp, 2011, 509: 101032

    25. [25]

      [25] Mohamed R M, Aazam E S. Int J Photoenergy, 2011: 137328

    26. [26]

      [26] Mohamed R M, El-Toni A M, Harraz F A, Ibrahim I A. J Envir Sci Eng, 2010, 4: 36

    27. [27]

      [27] Mohamed R M, Aazam E S. J Alloy Comp, 2014, 595: 8

    28. [28]

      [28] Mohamed R M, Aazam E S. Mater Res Bull, 2013, 48: 3572

    29. [29]

      [29] Mohamed R M, Mori K, Yamashita H. Int J Nanoparticles, 2009, 2: 512

    30. [30]

      [30] El-Bahy Z M, Ismail A A, Mohamed R M. J Hazard Mater, 2009, 166: 138

    31. [31]

      [31] Mohamed R M. J Mater Proc Tech, 2009, 209: 577

    32. [32]

      [32] Mohamed R M, Ibrahim F M, Mori K, Yamashita H. Stud Surf Sci Catal, 2008, 174: 1255

    33. [33]

      [33] Aal A A, Barakat M A, Mohamed R M. App Sur Sci, 2008, 254: 4577

    34. [34]

      [34] Mohamed R M, El-Midany A A, Othman I. Research on Chemical Intermediates, 2008, 34(5-7): 629

    35. [35]

      [35] Mohamed M M, Othman I, Mohamed R M. J Photochem Photobiol A, 2007, 191: 153

    36. [36]

      [36] Othman I, Mohamed R M, Ibrahim I A, Mohamed M M. Appl Catal A, 2006, 299: 95

    37. [37]

      [37] Arana J, Dona-Rodriguez J M, Rendon E T, Cabo C G, Gonzalez-Diaz, Herrera-Melian J A, Perez-pena J, Colon G, Navio J A. Appl Catal B, 2003, 44: 153

    38. [38]

      [38] Tryba B, Morawske A W, Inagaki M. Appl Catal B, 2003, 41: 427

    39. [39]

      [39] Matos J, Laine J, Herrmanna J M. Appl Catal B, 1998, 18: 281

    40. [40]

      [40] Han Z, Fina A. Prog Polym Sci, 2011, 36: 914

    41. [41]

      [41] Kormann C, Bahnemann D W, Hoffmann M R. Environ Sci Technol, 1991, 25: 494

    42. [42]

      [42] Oriňáková R, Oriňák A. Fuel, 2011, 90: 3123

    43. [43]

      [43] Miranda S M, Romanos G E, Likodimos V, Marques R R N, Favvas E P, Katsaros F K, Stefanopoulos K L, Vilar V J P, Faria J L, Falaras P, Silva A M T. Appl Catal B, 2014, 147: 65

    44. [44]

      [44] Dalt S D, Alves A K, Bergmann C P. Mater Res Bull, 2013, 48: 1845

    45. [45]

      [45] Liu C, Chen H, Dai K, Xue A, Chen H, Huang Q. Mater Res Bull, 2013, 48: 1499

    46. [46]

      [46] Zhu P, Nair A S, Yang S, Ramakrishna S. Mater Res Bull, 2011, 46: 588

    47. [47]

      [47] Wang W, Serp P, Kalck P, Faria J L. J Mol Catal A, 2005, 235: 194

    48. [48]

      [48] Zhou W, Pan K, Qu Y, Sun F, Tian C, Ren Z, Tian G, Fu H. Chemosphere, 2010, 81: 555

    49. [49]

      [49] Nishio J, Tokumura M, Znad HT, Kawase Y. J Hazard Mater, 2006, 138: 106

    50. [50]

      [50] Fasfous I I, Radwan E S, Dawoud J N. Appl Surf Sci, 2010, 256: 7246

    51. [51]

      [51] Li X, Zhao H, Quan X, Chen S, Zhang Y, Yu H. J Hazard Mater, 2011, 186: 407

    52. [52]

      [52] Jo W K, Kang H J. Chin J Catal (催化学报), 2014, 35: 1189

    53. [53]

      [53] Mohamed R M, Baeissa E. Chin J Catal (催化学报), 2013, 34: 1267

    54. [54]

      [54] Lü J, Sheng T, Su L, Xu G, Wang D, Zheng Z, Wu Y. Appl Sur Sci, 2013, 284: 229

    55. [55]

      [55] Rashid J, Barakat M A, Mohamed R M, Ibrahim I A. J Photochem Photobiol A, 2014, 284: 1

    56. [56]

      [56] Xiang Q, Yu J, Wong P K. J Colloid Interf Sci, 2011, 357: 163

  • 加载中
    1. [1]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    2. [2]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    3. [3]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    4. [4]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    5. [5]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    6. [6]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    7. [7]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    8. [8]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    9. [9]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    11. [11]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    12. [12]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    13. [13]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    14. [14]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    15. [15]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    16. [16]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    17. [17]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    18. [18]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    19. [19]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    20. [20]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

Metrics
  • PDF Downloads(4)
  • Abstract views(249)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return