Citation: Tiago Pinheiro Braga, Antônio Narcísio Pinheiro, Edson R. Leite, Regina Cláudia R. dos Santos, Antoninho Valentini. Cu, Fe, or Ni doped molybdenum oxide supported on Al2O3 for the oxidative dehydrogenation of ethylbenzene[J]. Chinese Journal of Catalysis, ;2015, 36(5): 712-720. doi: 10.1016/S1872-2067(14)60313-2 shu

Cu, Fe, or Ni doped molybdenum oxide supported on Al2O3 for the oxidative dehydrogenation of ethylbenzene

  • Corresponding author: Tiago Pinheiro Braga, 
  • Received Date: 9 January 2015
    Available Online: 3 February 2015

  • Molybdenum-based catalysts supported on Al2O3 doped with Ni, Cu, or Fe oxide were synthesized and used in ethylbenzene dehydrogenation to produce styrene. The molybdenum oxide was supported using an unconventional route that combined the polymeric precursor method (Pechini) and wet impregnation on commercial alumina. The samples were characterized by X-ray diffraction (XRD), N2 adsorption-desorption isotherms, temperature-programmed reduction of H2 (H2-TPR), and thermogravimetric (TG) analysis. XRD results showed that the added metals were well dispersed on the alumina support. The addition of the metal oxide (Ni, Cu, or Fe) of 2 wt% by wet impregnation did not affect the texture of the support. TPR results indicated a synergistic effect between the dopant and molybdenum oxide. The catalytic tests showed ethylbenzene conversion of 28%-53% and styrene selectivity of 94%-97%, indicating that the addition of the dopant improved the catalytic performance, which was related to the redox mechanism. Molybdenum oxides play a fundamental role in the oxidative dehydrogenation of ethylbenzene to styrene by its redox and acid-base properties. The sample containing Cu showed an atypical result with increasing conversion during the reaction, which was due to metal reduction. The Ni-containing solid exhibited the highest amount of carbon deposited, shown by TG analysis after the catalytic test, which explained its lower catalytic stability and selectivity.
  • 加载中
    1. [1]

      [1] Baghalha M, Ebrahimpour O. Appl Catal A, 2007, 326: 143

    2. [2]

      [2] Hirano T. Appl Catal, 1986, 26: 65

    3. [3]

      [3] Mimura N, Saito M. Catal Today, 2000, 55: 173

    4. [4]

      [4] Park S E, Han S C. J Ind Eng Chem, 2004, 10: 1257

    5. [5]

      [5] Sun A L, Qin Z F, Wang J G. Appl Catal A, 2002, 234: 179

    6. [6]

      [6] Sakurai Y, Suzaki T, Ikenaga N, Suzuki T. Appl Catal A, 2000, 192: 281

    7. [7]

      [7] Sato S, Ohhara M, Sodesawa T, Nozaki F. Appl Catal, 1988, 37: 207

    8. [8]

      [8] Fedorov G I, Sibgatullin S G, Solodova N L, Izmailov R I. Petrol Chem, 1976, 16(3): 162

    9. [9]

      [9] Cavani F, Trifirò F. Appl Catal A, 1995, 133: 219

    10. [10]

      [10] Li C G, Miao C X, Nie Y Y, Yue Y H, Gu S Y, Yang W M, Hua W M, Gao Z. Chin J Catal (李春光, 缪长喜, 聂颖颖, 乐英红, 顾松园, 杨为民, 华伟明, 高滋. 催化学报), 2010, 31: 993

    11. [11]

      [11] Li H Y, Yue Y H, Miao C X, Xie Z K, Hua W M, Gao Z . Chin J Catal (李惠云, 乐英红, 缪长喜, 谢在库, 华伟明, 高滋. 催化学报), 2006, 27: 4

    12. [12]

      [12] Ikenaga N, Tsuruda T, Senma K, Yamaguchi T, Sakurai Y, Suzuki T. Ind Eng Chem Res, 2000, 39: 1228

    13. [13]

      [13] Carja G, Nakamura R, Aida T, Niiyama H. J Catal, 2003, 218: 104

    14. [14]

      [14] He X X, Fan C, Gu X Y, Zhou X G, Chen D, Zhu Y A. J Mol Catal A, 2011, 344: 53

    15. [15]

      [15] Braga T P, Pinheiro A N, Teixeira C V, Valentini A. Appl Catal A, 2009, 366: 193

    16. [16]

      [16] Wong S T, Lin H P, Mou C Y. Appl Catal A, 2000, 198: 103

    17. [17]

      [17] Morán C, González E, Sánchez J, Solano R, Carruyo G, Moronta A. J Colloid Interface Sci, 2007, 315: 164

    18. [18]

      [18] Moronta A, Troconis M E, González E, Morán C, Sánchez J, González A, Quinónez J. Appl Catal A, 2006, 310: 199

    19. [19]

      [19] Pramod C V, Raghavendra C, Reddy K H P, Babu G V R, Rao K S R, Raju B D. J Chem Sci, 2014, 126: 311

    20. [20]

      [20] Su X Y, Wang R, Su D S. Chin J Catal (孙晓岩, 王锐, 苏党生. 催化学报), 2013, 34: 508

    21. [21]

      [21] Chen D, Holmen A, Sui Z J, Zhou X G. Chin J Catal (催化学报), 2014, 35: 824

    22. [22]

      [22] Cavani F, Trifiro F. Appl Catal A, 1995, 133: 219

    23. [23]

      [23] Xin Q, Lin L W. Chin J Catal (辛勤, 林励吾. 催化学报), 2013, 34: 401

    24. [24]

      [24] Dalmaschio C J, Mastelaro V R, Nascente P, Bettini J, Zotin J L, Longo E, Leite E R. J Colloid Interface Sci, 2010, 343: 256

    25. [25]

      [25] Chary K V R, Reddy K R, Kishan G, Niemantsverdriet J W, Mestl G. J Catal, 2004, 226: 283

    26. [26]

      [26] Al-Shihry S S, Halawy S A. J Mol Catal A, 1996, 113: 479

    27. [27]

      [27] Humblot F, Candy J P, Le Peltier F, Didillon B, Basset J M. J Catal, 1998, 179: 459

    28. [28]

      [28] Kaneko S, Arakawa T, Ohshima M, Kurokawa H, Miura H. Appl Catal A, 2009, 356: 80

    29. [29]

      [29] Men Y, Yang M. Catal Commun, 2012, 22: 68

    30. [30]

      [30] Delgado J J, Chen X, Tessonnier J P, Schuster M E, Del Rio E, Schlögl R, Su D S. Catal Today, 2010, 150: 49

    31. [31]

      [31] Nederlof C, Kapteijn F, Makkee M. Appl Catal A, 2012, 417-418: 163

    32. [32]

      [32] Zarubina V, Nederlof C, Van der Linden B, Kapteijn F, Heeres H J, Makkee M, Melian-Cabrera I. J Mol Catal A, 2014, 381: 179

    33. [33]

      [33] Braga T P, Sales B M C, Pinheiro A N, Herrera W T, Baggio-Saitovitch E, Valentini A. Catal Sci Technol, 2011, 1: 1383

    34. [34]

      [34] Pochamoni R, Narani A, Gurram V R B, Gudimella M D, Potharaju P S S P, Burri D R, Rao K S R. Indian J Chem Sect A, 2014, 53A: 493

    35. [35]

      [35] Oganowski W, Hanuza J, Drulis H, Mista W, Macalik L. Appl Catal A, 1996, 133: 143

    36. [36]

      [36] Irún O, Sadosche S A, Lasobras J, Soler J, Francés E, Herguido J, Menéndez M. Catal Today, 2013, 203: 53

    37. [37]

      [37] Park M S, Vislovskiy V P, Chang J S, Shul Y G, Yoo J S, Park S E. Catal Today, 2003, 87: 205

    38. [38]

      [38] Abello M C, Gomez M F, Ferretti O. Appl Catal A, 2001, 207: 421

    39. [39]

      [39] Nederlof C, Talay G, Kapteijn F, Makkee M. Appl Catal A, 2012, 423-424: 59

    40. [40]

      [40] Watanabe R, Sekine Y, Kojima J, Matsukata M, Kikuchi E. Appl Catal A, 2011, 398: 66

    41. [41]

      [41] He X X, Fan C, Gu X Y, Zhou X G, Chen D, Zhu Y A. J Mol Catal A, 2011, 344: 53

    42. [42]

      [42] Hanuza J, Jezowska-Trzebiatowska B, Oganowski W. J Mol Catal, 1978, 4: 271

    43. [43]

      [43] Abello M C, Gomez M F, Ferretti O. Appl Catal A, 2001, 207: 421

    44. [44]

      [44] Vedrine J C, Millet J M M, Volta J C. Catal Today, 1996, 32: 115

  • 加载中
    1. [1]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    2. [2]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    3. [3]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    4. [4]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    5. [5]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    6. [6]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    7. [7]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    8. [8]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    9. [9]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

Metrics
  • PDF Downloads(0)
  • Abstract views(297)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return