Citation: Yongsheng Peng, Wenguang Leng, Bin Dong, Rile Ge, Hongdong Duan, Yan’an Gao. Bottom-up preparation of gold nanoparticle-mesoporous silica composite nanotubes as a catalyst for the reduction of 4-nitrophenol[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1117-1123. doi: 10.1016/S1872-2067(14)60310-7 shu

Bottom-up preparation of gold nanoparticle-mesoporous silica composite nanotubes as a catalyst for the reduction of 4-nitrophenol

  • Corresponding author: Hongdong Duan,  Yan’an Gao, 
  • Received Date: 7 January 2015
    Available Online: 7 February 2015

    Fund Project: 国家自然科学基金(21273235, 21303076, 21403214) (21273235, 21303076, 21403214)

  • Gold (Au) nanoparticle (NP)-mesoporous silica (SiO2) composite nanotubes were prepared by a bottom-up approach, in which Au NPs were anchored to the inner wall of mesoporous SiO2 tubular shells. In this composite, the agglomeration, exfoliation, and grain growth of Au NPs were restricted, and the loading and size of the catalyst NPs were easily tuned. The mesoporous shell, open ends, and one-dimensional passage of the SiO2 nanotubes all promote the diffusion of reactants, which enhanced the catalytic efficiency of this composite in the reduction of 4-nitrophenol. The Au NP-mesoporous SiO2 composite nanotubes also demonstrated good reusability, and no leaching or agglomeration of the Au NPs was observed during the catalytic reaction.
  • 加载中
    1. [1]

      [1] Su R, Tiruvalam R, He Q, Dimitratos N, Kesavan L, Hammond C, Lopez-Sanchez J A, Bechstein R, Kiely C J, Hutchings G J, Besenbacher F. ACS Nano, 2012, 6: 6284

    2. [2]

      [2] Yamada Y, Mizutani M, Nakamura T, Yano K. Chem Mater, 2010, 22: 1695

    3. [3]

      [3] Zhang P, Shao C L, Li X H, Zhang M Y, Zhang X, Su C Y, Lu N, Wang K X, Liu Y C. Phys Chem Chem Phys, 2013, 15: 10453

    4. [4]

      [4] Dong Z P, Le X D, Liu Y S, Dong C X, Ma J T. J Mater Chem A, 2014, 2: 18775

    5. [5]

      [5] Dong Z P, Le X D, Dong C X, Zhang W, Li X L, Ma J T. Appl Catal B, 2015, 162: 372

    6. [6]

      [6] Arnal P M, Comotti M, Schüth F. Angew Chem Int Ed, 2006, 45: 8224

    7. [7]

      [7] Cui C H, Yu S H. Acc Chem Res, 2013, 46: 1427

    8. [8]

      [8] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P D, Somorjai G A. Nat Mater, 2009, 8: 126

    9. [9]

      [9] Narayanan R, El-Sayed M A. Langmuir, 2005, 21: 2027

    10. [10]

      [10] Chen Z, Cui Z M, Niu F, Jiang L, Song W G. Chem Commun, 2010, 46: 6524

    11. [11]

      [11] John J, Gravel E, Hagège A, Li H Y, Gacoin T, Doris E. Angew Chem Int Ed, 2011, 50: 7533

    12. [12]

      [12] Xu C, Wang X, Zhu J W. J Phys Chem C, 2008, 112: 19841

    13. [13]

      [13] Carrettin S, McMorn P, Johnston P, Griffin K, Kiely C J, Hutchings G J. Phys Chem Chem Phys, 2003, 5: 1329

    14. [14]

      [14] Ombaka L M, Ndungu P, Nyamori V O. Catal Today, 2013, 217: 65

    15. [15]

      [15] Okumura M, Tsubota S, Iwamoto M, Haruta M. Chem Lett, 1998, 27: 315

    16. [16]

      [16] Wakayama H, Setoyama N, Fukushima Y. Adv Mater, 2003, 15: 742

    17. [17]

      [17] Junges U, Jacobs W, Voigt-Martin I, Krutzsch B, Schüth F. J Chem Soc, Chem Commun, 1995: 2283

    18. [18]

      [18] Ma L N, Leng W G, Zhao Y P, Gao Y A, Duan H D. RSC Adv, 2014, 4: 6807

    19. [19]

      [19] Lee J, Park J C, Song H. Adv Mater, 2008, 20: 1523

    20. [20]

      [20] Ge J P, Zhang Q, Zhang T R, Yin Y D. Angew Chem Int Ed, 2008, 47: 8924

    21. [21]

      [21] Deng Y H, Cai Y, Sun Z K, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D Y. J Am Chem Soc, 2010, 132: 8466

    22. [22]

      [22] Yin Y Y, Chen M, Zhou S X, Wu L M. J Mater Chem, 2012, 22: 11245

    23. [23]

      [23] Leng W G, Chen M, Zhou S X, Wu L M. Chem Commun, 2013, 49: 7225

    24. [24]

      [24] Frens G. Nature Phys Sci, 1973, 241: 20

    25. [25]

      [25] Wang S Y, Wang X, Jiang S P. Phys Chem Chem Phys, 2011, 13: 6883

    26. [26]

      [26] Stejskal J, Sapurina I, Trchová M, Konyushenko E N, Holler P. Polymer, 2006, 47: 8253

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(0)
  • Abstract views(247)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return