Citation: Nader Ghaffari Khaligh, Sharifah Bee Abd Hamid. 4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for the synthesis of pyrano[4, 3-b]pyran derivatives using thermal and ultrasonic irradiation[J]. Chinese Journal of Catalysis, ;2015, 36(5): 728-733. doi: 10.1016/S1872-2067(14)60307-7 shu

4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for the synthesis of pyrano[4, 3-b]pyran derivatives using thermal and ultrasonic irradiation

  • Corresponding author: Nader Ghaffari Khaligh, 
  • Received Date: 7 January 2015
    Available Online: 29 January 2015

  • 4-(Succinimido)-1-butane sulfonic acid was shown to be an efficient and reusable Brönsted acid catalyst for the synthesis of pyrano[4,3-b]pyran derivatives using thermal and ultrasonic conditions. The catalyst was prepared by mixing succinimide and 1,4-butanesultone, which is simpler and safer than the preparation of succinimide sulfonic acid. This method has the advantages of high yield, clean reaction, simple methodology, and short reaction time. The catalyst can be recycled without loss of activity.
  • 加载中
    1. [1]

      [1] De Clercq E. Farmaco, 1999, 54: 26

    2. [2]

      [2] Parreira R L T, Abrahão O, Galembeck S E. Tetrahedron, 2001, 57: 3243

    3. [3]

      [3] Presti E L, Boggia R, Feltrin A, Menozzi G, Dorigo P, Mosti L. Farmaco, 1999, 54: 465

    4. [4]

      [4] Anderson W K, Dean D C, Endo T. J Med Chem, 1990, 33: 1667

    5. [5]

      [5] Rajguru D, Keshwal B S, Jain S. Med Chem Res, 2013, 22: 5934

    6. [6]

      [6] Dragovich P S, Prins T J, Zhou R, Brown E L, Maldonado F C, Fuhrman S A, Zalman L S, Tuntland T, Lee C A, Patick A K, Matthews D A, Hendrickson T F, Kosa M B, Liu B, Batugo M R, Gleeson J P R, Sakata S K, Chen L J, Guzman M C, Meador J W III, Ferre R A, Worland S T. J Med Chem, 2002, 45: 1607

    7. [7]

      [7] Kemnitzer W, Kasibhatla S, Jiang S C, Zhang H, Zhao J H, Jia S J, Xu L F, Crogan-Grundy C, Denis R, Barriault N, Vaillancourt L, Charron S, Dodd J, Attardo G, Labrecque D, Lamothe S, Gourdeau H, Tseng B, Drewe J, Cai S X. Bioorg Med Chem Lett, 2005, 15: 4745

    8. [8]

      [8] Kemnitzer W, Drewe J, Jiang S C, Zhang H, Wang Y, Zhao J H, Jia S J, Herich J, Labreque D, Storer R, Meerovitch K, Bouffard D, Rej R, Denis R, Blais C, Lamothe S, Attardo G, Gourdeau H, Tseng B, Kasibhatla S, Cai S X. J Med Chem, 2004, 47: 6299

    9. [9]

      [9] Kemnitzer W, Drewe J, Jiang S C, Zhang H, Zhao J H, Crogan-Grundy C, Xu L F, Lamothe S, Gourdeau H, Denis R, Tseng B, Kasibhatla S, Cai S X. J Med Chem, 2007, 50: 2858

    10. [10]

      [10] Fan X S, Feng D, Qu Y Y, Zhang X Y, Wang J J, Loiseau P M, Andrei G, Snoeck R, Clercq E D. Bioorg Med Chem Lett, 2010, 20: 809

    11. [11]

      [11] Tatsuta K, Yamaguchi T, Tsuda Y, Yamaguchi Y, Hattori N, Nagai H, Hosokawa S. Tetrahedron Lett, 2007, 48: 4187

    12. [12]

      [12] Tanabe K, Hölderich W F. Appl Catal A, 1999, 181: 399

    13. [13]

      [13] Cole-Hamilton D J. Science, 2003, 299: 1702

    14. [14]

      [14] Chakrabarti A, Sharma M M. React Polym, 1993, 20: 1

    15. [15]

      [15] Riego J M, Sedin Z, Zaldivar J M, Marziano N C, Tortato C. Tetrahedron Lett, 1996, 37: 513

    16. [16]

      [16] Turro N J. Tetrahedron, 1987, 43: 1589

    17. [17]

      [17] Zolfigol M A, Chehardoli G, Dehghanian M, Niknam K, Shirini F, Khoramabadi-Zad A. J Chin Chem Soc, 2008, 55: 885

    18. [18]

      [18] Weber U S, Steffen B, Siegers C P. Res Commun Mol Pathol Pharmacol, 1998, 99: 193

    19. [19]

      [19] Du B X, Yin M Y, Zhang M M, Li Y L, Wang X S. J Heterocycl Chem, 2012, 49: 1439

    20. [20]

      [20] Patil A D, Freyer A J, Eggleston D S, Haltiwanger R C, Bean M F, Taylor P B, Caranfa M J, Breen A L, Bartus H R, Johnson R K, Hertzberg R P, Westley J W. J Med Chem, 1993, 36: 4131

    21. [21]

      [21] Anastas P T, Warner J C. Green Chemistry: Theory and Practice. Oxford: Oxford Univ Press, 1998

    22. [22]

      [22] Mason T J. Ultrason Sonochem, 2007, 14: 476

    23. [23]

      [23] Khaligh N G, Shirini F. Ultrason Sonochem, 2013, 20: 26

    24. [24]

      [24] Khaligh N G. Ultrason Sonochem, 2013, 20: 1062

    25. [25]

      [25] Cravotto G, Cintas P. Chem Soc Rev, 2006, 35: 180

    26. [26]

      [26] Xia M, Lu Y D. Ultrason Sonochem, 2007, 14: 235

    27. [27]

      [27] Shirini F, Khaligh N G. Phosphorus Sulfur Silicon Relat Elem, 2011, 186: 2156

    28. [28]

      [28] Shirini F, Khaligh N G. Dyes Pigm, 2012, 95: 789

    29. [29]

      [29] Shirini F, Khaligh N G. Chin J Catal (催化学报), 2013, 34: 695

    30. [30]

      [30] Shirini F, Khaligh N G. Chin J Catal (催化学报), 2013, 34: 1890

    31. [31]

      [31] Suslick K S, Didenko Y, Fang M M, Hyeon T, Kolbeck K J, McNamara W B III, Mdleleni M M, Wong M. Philos Trans R Soc A, 1999, 357: 335

    32. [32]

      [32] Mason T J, Peters D. Practical Sonochemistry: Power Ultrasound Uses and Applications. 2nd Ed. Chichester: Horwood Publishing, 2002. 17

    33. [33]

      [33] Luche J L. Synthetic Organic Sonochemistry. New York: Plenum Press, 1998

    34. [34]

      [34] Jin T S, Sun G, Li Y W, Li T S. Green Chem, 2002, 4: 255

    35. [35]

      [35] Piao M Z, Imafuku K. Tetrahedron Lett, 1997, 38: 5301

    36. [36]

      [36] Magedov I V, Manpadi M, Ogasawara M A, Dhawan A S, Rogelj S, Van Slambrouck S, Steelant W F A, Evdokimov N M, Uglinskii P Y, Elias E M, Knee E J, Tongwa P, Antipin M Y, Kornienko A. J Med Chem, 2008, 51: 2561

    37. [37]

      [37] Stoyanov E V, Ivanov I C, Heber D. Molecules, 2000, 5: 19

    38. [38]

      [38] Shi D Q, Niu L H, Zhuang Q Y. Chin J Org Chem (史达清, 牛力惠, 庄启亚. 有机化学), 2008, 28: 1633

    39. [39]

      [39] Wang X S, Zeng Z S, Li Y L, Shi D Q, Tu S J, Zhou J X. Arkivoc, 2006, (11): 107

    40. [40]

      [40] Shaabani A, Samadi S, Badri Z, Rahmati A. Catal Lett, 2005, 104: 39

    41. [41]

      [41] Shaabani A, Samadi S, Rahmati A. Synth Commun, 2007, 37: 491

    42. [42]

      [42] Seifi M, Sheibani H. Catal Lett, 2008, 126: 275

    43. [43]

      [43] Rajguru D, Keshwal B S, Jain S. Chin Chem Lett, 2013, 24: 1033

    44. [44]

      [44] Khaligh N G. Monatsh Chem, 2014, 145: 1643

    45. [45]

      [45] Ghashang M, Mansoor S S, Aswin K. Chin J Catal (催化学报), 2014, 35: 127

  • 加载中
    1. [1]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    2. [2]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    3. [3]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    4. [4]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    5. [5]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    6. [6]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    9. [9]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    10. [10]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    11. [11]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    12. [12]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    13. [13]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    14. [14]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    15. [15]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    16. [16]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    17. [17]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    18. [18]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

Metrics
  • PDF Downloads(0)
  • Abstract views(319)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return