Citation: Keyvan Bijanzad, Azadeh Tadjarodi, Omid Akhavan. Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II)[J]. Chinese Journal of Catalysis, ;2015, 36(5): 742-749. doi: 10.1016/S1872-2067(14)60305-3 shu

Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II)

  • Corresponding author: Omid Akhavan, 
  • Received Date: 12 December 2014
    Available Online: 22 January 2015

  • Hollow microblocks of [Zn(anic)2], as a novel coordination compound, were synthesized using 2-aminonicotinic acid (Hanic) and zinc (II) nitrate tetrahydrate. The chemical composition of the zinc complex, ZnC12H10N4O4, was determined by Fourier transform infrared (FTIR) spectroscopy and elemental analysis. The synthesized zinc complex was used as a precursor to produce ZnO nanostructures by calcination at 550 ℃ for 4 h. Morphological studies by scanning electron microscopy and transmission electron microscopy revealed the formation of porous microbricks of ZnO nanoparticles. N2 adsorption-desorption analysis showed that the obtained ZnO microbricks possess a mesoporous structure with a surface area of 8.13 m²/g and a pore size of 22.6 nm. The X-ray diffraction pattern of the final product proved the formation of a pure ZnO composition with a hexagonal structure. Moreover, FTIR analyses showed that the 2-aminonicotinic acid ligand peaks were absent after the calcination step. Diffuse reflectance spectroscopy was used to determine the band gap energy of the produced ZnO and it was about 3.19 eV. To investigate the photocatalytic activity of the porous ZnO nanostructure, a series of photocatalytic tests were carried out to remove Congo red, as a representative toxic azo dye, from aqueous solution. The results show that the product can be used as an efficient photocatalyst for waste water treatment with high degradation efficiency.
  • 加载中
    1. [1]

      [1] Rathnayake W G I U, Ismail H, Baharin A, Bandara I M C C D, Rajapakse S. J Appl Polym Sci, 2014, 131: 39601/1

    2. [2]

      [2] Akhavan O, Azimirad R, Safa S. Mater Chem Phys, 2011, 130: 598

    3. [3]

      [3] Akhavan O, Mehrabian M, Mirabbaszadeh K, Azimirad R. J Phys D, 2009, 42: 225305/1

    4. [4]

      [4] Fang X, Wang X H, Zhao D X, Zhao H F, Fang F, Wei Z P, Li J H, Chu X Y, Wang F, Wang D D, Yan Y S. Physica E, 2014, 59: 93

    5. [5]

      [5] Nedic S, Chun Y T, Hong W K, Chu D P, Welland M. Appl Phys Lett, 2014, 104: 033101/1

    6. [6]

      [6] Chandiran A K, Abdi-Jalebi M, Nazeeruddin M K, Grätzel M. ACS Nano, 2014, 8: 2261

    7. [7]

      [7] Akhavan O. Carbon, 2011, 49: 11

    8. [8]

      [8] Kim M, Lee H J, Oh S, Kim Y, Jung H, Oh M K, Yoon Y J, Yoo T H, Yoon T S, Lee H H. Biosens Bioelectron, 2014, 56: 33

    9. [9]

      [9] Akhavan, O. ACS Nano, 2010, 4: 4174

    10. [10]

      [10] Zhang H, Sun J M, Dagle V L, Halevi B, Datye A K, Wang Y. ACS Catal, 2014, 4: 2379

    11. [11]

      [11] Alinezhad H, Tavakkoli S M, Biparva P. Chin J Catal (催化学报), 2014, 35: 560

    12. [12]

      [12] Lu J, Wang H H, Dong Y F, Wang F Q, Dong S J. Chin J Catal (催化学报), 2014, 35: 1113

    13. [13]

      [13] Kumar R, Anandan S, Hembram K, Narasinga Rao T. ACS Appl Mater Interf, 2014, 6: 13138

    14. [14]

      [14] Wu D Z, Fan X M, Dai J, Liu H R, Liu H, Zhang F Z. Chin J Catal (催化学报), 2012, 33: 802

    15. [15]

      [15] Wang X C, Yu J C, Ho C M, Hou Y D, Fu X Z. Langmuir, 2005, 21: 2552

    16. [16]

      [16] Chong M N, Lei S M, Jin B, Saint C, Chow C W K. Sep Purif Technol, 2009, 67: 355

    17. [17]

      [17] Xu H L, Wang W Z, Zhu W. J Phys Chem B, 2006, 110: 13829

    18. [18]

      [18] Yu J G, Su Y R, Cheng B. Adv Funct Mater, 2007, 17: 1984

    19. [19]

      [19] Soares-Santos P C R, Sá Ferreira R A, Trindade T, Carlos L D, Nogueira H I S. J Alloys Compd, 2008, 451: 575

    20. [20]

      [20] Abu-Youssef M A M, Dey R, Gohar Y, Massoud A A, Öhrström L, Langer V. Inorg Chem, 2007, 46: 5893

    21. [21]

      [21] Toma M, Sanchez A, Garcia-Tasende M S, Casas J S, Castellano E E, Ellena J. Appl Organomet Chem, 2004, 18: 302

    22. [22]

      [22] Paraschiv C, Cucos A, Shova S, Madalan A M, Maxim C, Visinescu D, Cojocaru B, Parvulescu V I, Andruh M. Cryst Growth Des, 2014, DOI: 10.1021/cg501604c

    23. [23]

      [23] Kimitsuka Y, Hosono E, Ueno S, Zhou H S, Fujihara S. Inorg Chem, 2013, 52: 14028

    24. [24]

      [24] Tadjarodi A, Izadi M, Imani M. Mater Lett, 2013, 92: 108

    25. [25]

      [25] Wang X Z, Liu W, Liu J R, Wang F L, Kong J, Qiu S, He C Z, Luan L Q. ACS Appl Mater Interf, 2012, 4: 817

    26. [26]

      [26] Jamal R K, Hameed M A, Adem K A. Mater Lett, 2014, 132: 31

    27. [27]

      [27] Jin C G, Yu T, Yang Y, Wu Z F, Zhuge L J, Wu X M, Feng Z C. Mater Chem Phys, 2013, 139: 506

    28. [28]

      [28] Sakkas V A, Islam Md A, Stalikas C, Albanis T A. J Hazard Mater, 2010, 175: 33

    29. [29]

      [29] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 6th Ed. New Jersey: Wiley, 2009

    30. [30]

      [30] Zhang M Y, Liu Y, Li L, Gao H, Zhang X T. Catal Commun, 2015, 58: 122

    31. [31]

      [31] Zhou M J, Gao X H, Hu Y, Chen J F, Hu X. Appl Catal B, 2013, 138-139: 1

    32. [32]

      [32] Yu J G, Xiang Q J, Zhou M H. Appl Catal B, 2009, 90: 595

    33. [33]

      [33] Sivalingam G, Nagaveni K, Hegde M S, Madras G. Appl Catal B, 2003, 45: 23

    34. [34]

      [34] Yu J G, Yu J C, Leung M K P, Ho W, Cheng B, Zhao X J, Zhao J C. J Catal, 2003, 217: 69

    35. [35]

      [35] Cao L X, Spiess F J, Huang A M, Suib S L, Obee T N, Hay S O, Freihaut J D. J Phys Chem B, 1999, 103: 2912

    36. [36]

      [36] Xiao Q, Si Z C, Zhang J, Xiao C, Tan X K. J Hazard Mater, 2008, 150: 62

    37. [37]

      [37] Huang Y, Ho W, Lee S, Zhang L Z, Li G S, Yu J C. Langmuir, 2008, 24: 3510

    38. [38]

      [38] Xiao K, Tian N, Guo Y X, Huang H W, Li X W, Zhang Y H. Inorg Chem Commun, 2015, 52: 5

    39. [39]

      [39] Comparelli R, Fanizza E, Curri M L, Cozzoli P D, Mascolo G, Agostiano A. Appl Catal B, 2005, 60: 1

    40. [40]

      [40] Zhang Y H, Chen Z, Liu S Q, Xu Y J. Appl Catal B, 2013, 140-141: 598

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    3. [3]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    4. [4]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    5. [5]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    6. [6]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    7. [7]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

    8. [8]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    9. [9]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    13. [13]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    14. [14]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    18. [18]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    19. [19]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    20. [20]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

Metrics
  • PDF Downloads(0)
  • Abstract views(311)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return