Citation: Qiuhua Zhu, Hongwei Cheng, Xingli Zou, Xionggang Lu, Qian Xu, Zhongfu Zhou. Synthesis, characterization, and catalytic performance of La0.6Sr0.4NixCo1-xO3 perovskite catalysts in dry reforming of coke oven gas[J]. Chinese Journal of Catalysis, ;2015, 36(7): 915-924. doi: 10.1016/S1872-2067(14)60303-X shu

Synthesis, characterization, and catalytic performance of La0.6Sr0.4NixCo1-xO3 perovskite catalysts in dry reforming of coke oven gas

  • Corresponding author: Hongwei Cheng,  Xionggang Lu, 
  • Received Date: 23 December 2014
    Available Online: 28 January 2015

    Fund Project: 国家自然科学基金(51474145) (51474145) 国家杰出青年科学基金(51225401) (51225401) 上海市青年科技启明星计划(15QA1402100) (15QA1402100) 上海市教育委员会科研创新项目(14YZ013). (14YZ013)

  • The dry reforming of coke oven gas (COG) to produce syngas was performed over La0.6Sr0.4NixCo1-xO3 catalysts in a fixed-bed reactor at 800 ℃. These perovskite-type oxides were synthesized using a sol-gel method and characterized using X-ray diffraction (XRD), N2 adsorption-desorption, temperature-programmed reduction of H2, scanning electron microscopy, transmission electron microscopy, and thermogravimetry-differential scanning calorimetry. XRD results showed that the La0.6Sr0.4NixCo1-xO3 perovskite-type oxides formed quaternary solid solutions. The effects of the degree of Ni substitution (x) and the catalyst calcination temperature on the dry reforming of COG were investigated. XRD analysis of the tested catalysts showed the formation of Ni0, Co0, and La2O2CO3, of which the latter is the main active phase responsible for the high activity and stability, and the suppression of coke formation under severe reaction conditions. COG rich in H2 can also reduce the formation of carbon deposits by inhibiting CH4 decomposition.
  • 加载中
    1. [1]

      [1] Domínguez A, Fernández Y, Fidalgo B, Pis J J, Menéndez J A. Energy Fuels, 2007, 21: 2066

    2. [2]

      [2] Zahedinezhad M, Rowshanzamir S, Eikani M H. Int J Hydrogen Energy, 2009, 34: 1292

    3. [3]

      [3] Bernudez J M, Ferrera-Lorenzo N, Luque S, Arenillas A, Menendez J A. Fuel Process Technol, 2013, 115: 215

    4. [4]

      [4] Tao W, Cheng H W, Zhu Q H, Lu X G, Ding W Z. Appl Mech Mater, 2013, 394: 270

    5. [5]

      [5] Modesto M, Nebra S A. Appl Therm Eng, 2009, 29: 2127

    6. [6]

      [6] Suttiumporn K, Maneerung T, Kathiraser Y, Kawi S. Int J Hydrogen Energy, 2012, 37: 11195

    7. [7]

      [7] Wang Q, Luo J, Zhong Z, Borgna A. Energy Environ Sci, 2011, 4: 42

    8. [8]

      [8] Song C S. Catal Today, 2002, 77: 17

    9. [9]

      [9] Ni M, Leung D Y C, Leung M K H, Sumathy K. Fuel Process Technol, 2006, 87: 461

    10. [10]

      [10] Turpeinen E, Raudaskoski R, Pongracz E, Keiski R L. Int J Hydrogen Energy, 2008, 33: 6635

    11. [11]

      [11] Bermudez J M, Fidalgo B, Arenillas A, Menendez J A. Fuel, 2010, 89: 2897

    12. [12]

      [12] Yang Z B, Ding W Z, Zhang Y W, Lu X G, Zhang Y W, Shen P J. Int J Hydrogen Energy, 2010, 35: 6239

    13. [13]

      [13] Shen J, Wang Z Z, Yang H W, Yao R S. Energy Fuels, 2007, 21: 3588

    14. [14]

      [14] Joseck F, Wang M, Wu Y. Int J Hydrogen Energy, 2008, 33: 1445

    15. [15]

      [15] Cheng H W, Lu X G, Hu D H, Zhang Y F, Ding W Z, Zhao H L. Int J Hydrogen Energy, 2011, 36: 528

    16. [16]

      [16] Matos J, Diaz K, Carcia V, Cordero T C, Brito J L. Catal Lett, 2006, 109: 163

    17. [17]

      [17] Pompeo F, Gazzoli D, Nichio N N. Int J Hydrogen Energy, 2009, 34: 2260

    18. [18]

      [18] Hirose T, Ozawa Y, Nagai M. Chin J Catal (催化学报), 2011, 32: 771

    19. [19]

      [19] Bartholomew C H. Catal Rev Sci Eng, 1982, 24: 67

    20. [20]

      [20] Goldwasser M R, Rivas M E, Pietri E, Perez-Zurita M J, Cubeiro M L, Grivobal-Constant A, Leclerq G. J Mol Catal A, 2005, 228: 325

    21. [21]

      [21] Moradi G R, Khosravian F, Kahmanzadeh M. Chin J Catal (催化学报), 2012, 33: 797

    22. [22]

      [22] Echchahed B, Kaliaguine S, Alamdari H. Int J Chem React Eng, 2006, 4: A29

    23. [23]

      [23] Valderrama G, Kiennemann A, Goldwasser M R. Catal Today, 2008, 133: 142

    24. [24]

      [24] Sutthiumporn K, Kawi S. Int J Hydrogen Energy, 2011, 36: 14435

    25. [25]

      [25] Li Q M, Zhu X F, He X F, Cong Y, Yang W S. J Membr Sci, 2011, 367: 134

    26. [26]

      [26] Luo H X, Jiang H Q, Efimov K, Caro J, Wang H H. AIChE J, 2011, 57: 2738

    27. [27]

      [27] Zhang Y W, Cheng H W, Lu X G, Ding W Z, Zhou G Z. Rare Metals, 2009, 28: 582

    28. [28]

      [28] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Energy Fuels, 2009, 23: 414

    29. [29]

      [29] Tao W, Cheng H W, Yao W L, Lu X G, Zhu Q H, Li G S, Zhou Z F. Int J Hydrogen Energy, 2014, 39: 18650

    30. [30]

      [30] Guo J Z, Hou Z Y, Gao J, Zheng X M. Energy Fuels, 2008, 22: 1444

    31. [31]

      [31] Roh H S, Jun K W, Dong W S, Chang J S, Park S E, Joe Y I. J Mol Catal A, 2002, 181: 137

    32. [32]

      [32] Bedel L, Roger A C, Estournes C, Kiennemann A. Catal Today, 2003, 85: 207

    33. [33]

      [33] Valderrama G, Kiennemann A, Goldwasser M R. J Power Sources, 2010, 195: 1765

    34. [34]

      [34] Sokolov S, Kondratenko E V, Pohl M M, Barkschat A, Rodemerk U. Appl Catal B, 2012, 113-114: 19

    35. [35]

      [35] Zhang Z L, Verykios X E. Appl Catal A, 1996, 138: 109

    36. [36]

      [36] Zhang Z L, Verykios X E, Macdonald S M, Affrossman S. J Phys Chem, 1996, 100: 744

    37. [37]

      [37] Orera A, Larraz G, Sanjuán M L. J Eur Ceram Soc, 2013, 33: 2103

    38. [38]

      [38] Fierro J L G, Tascon J M D, Tejuca L G. J Catal, 1985, 93: 83

    39. [39]

      [39] Sierra Gallego G, Mondragon F, Barrault J, Tatibouet J M, Batiot-Duperyrat C. Appl Catal A, 2006, 311: 164

    40. [40]

      [40] Duprez D, Demiccheli M C, Marecot P, Barbier J, Ferretti O A, Ponzi E N. J Catal, 1990, 124: 324

    41. [41]

      [41] Valderrama G, Navarro C U, Goldwasser M R. J Power Sources, 2013, 234: 31

    42. [42]

      [42] Cheng H W, Feng S H, Tao W, Lu X G, Yao W L, Li G S, Zhou Z F. Int J Hydrogen Energy, 2014, 39: 12604

    43. [43]

      [43] Tsyganok A I, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T. J Catal, 2003, 213: 191

    44. [44]

      [44] Slagtern A, Schuurman Y, Leclercq C, Verykios X, Mirodatos C. J Catal, 1997, 172: 118

    45. [45]

      [45] Rynkowski J M, Paryjczak T, Lenik M. Appl Catal A, 1995, 126: 257

    46. [46]

      [46] Hou Z Y, Yokota O, Tanaka T, Yashima T. Catal Lett, 2003, 89: 121

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    13. [13]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    20. [20]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(1)
  • Abstract views(376)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return