Citation: Sayyedeh Shadfar Pourpanah, Sayyed Mostafa Habibi-Khorassani, Mehdi Shahraki. Fructose-catalyzed synthesis of tetrahydrobenzo[b]pyran derivatives: Investigation of kinetics and mechanism[J]. Chinese Journal of Catalysis, ;2015, 36(5): 757-763. doi: 10.1016/S1872-2067(14)60302-8 shu

Fructose-catalyzed synthesis of tetrahydrobenzo[b]pyran derivatives: Investigation of kinetics and mechanism

  • Corresponding author: Sayyed Mostafa Habibi-Khorassani, 
  • Received Date: 16 December 2014
    Available Online: 19 January 2015

  • Fructose was used as an efficient catalyst for three-component condensation reactions of aryl aldehydes, malononitrile, and dimedone in a mixture of EtOH and H2O as green solvents. The advantages of this method are a short reaction time, high yields, low cost, easy accesses, and simple work-up. The mechanism of the synthesis of a derivative of 4H-tetrahydrobenzo[b]pyran was clarified using spectroscopic kinetic methods. The activation energy (Ea = 65.34 kJ/mol) and related kinetic parameters (ΔG = 69.14 kJ/mol, ΔS = 20.99 J/(mol·K), and ΔH = 62.89 kJ/mol) were calculated, based on the effects of temperature, concentration, and solvent. The first step in the proposed mechanism was identified as the rate-determining step (k1), based on the steady-state approximation.
  • 加载中
    1. [1]

      [1] Alvey L, Prado S, Huteau V, Saint-Joanis B, Michel S, Koch M, Cole S T, Tillequin F, Janin Y L. Bioorg Med Chem, 2008, 16: 8264

    2. [2]

      [2] Symeonidis T, Chamilos M, Hadjipavlou-Litina D J, Kallitsakis M, Litinas K E. Bioorg Med Chem Lett, 2009, 19: 1139

    3. [3]

      [3] Narender T, Shweta, Gupta S. Bioorg Med Chem Lett, 2004, 14: 3913

    4. [4]

      [4] Lakshmi V, Pandey K, Kapil A, Singh N, Samant M, Dube A. Phytomedicine, 2007, 14: 36

    5. [5]

      [5] Kumar D, Reddy V B, Sharad S, Dube U, Kapur S. Eur J Med Chem, 2009, 44: 3805

    6. [6]

      [6] El-Agrody A M, El-Hakim M H, El-Latif M S A, Fakery A H, El-Sayed E S M, El-Ghareab K A. Acta Pharm, 2000, 50: 111

    7. [7]

      [7] Konkoy C S, Fick D B, Cai S X, Lan N C, Keana J F W. Chem Abstr, 2001, 134a: 29313

    8. [8]

      [8] Niknam K, Borazjani N, Rashidian R, Jamali A. Chin J Catal (催化学报), 2013, 34: 2245

    9. [9]

      [9] Devi I, Bhuyan P J. Tetrahedron Lett, 2004, 45: 8625

    10. [10]

      [10] Tu S J, Jiang H, Zhung Q Y, Miu C B, Shi D Q, Wang X S, Gao Y. Chin J Org Chem, 2003, 23: 488

    11. [11]

      [11] Jin T S, Wang A Q, Shi F, Han L S, Liu L B, Li T S. Arkivoc, 2006: 78

    12. [12]

      [12] Balalaie S, Shiekh-Ahmadi M, Bararjanian M. Catal Commun, 2007, 8: 1724

    13. [13]

      [13] Abdolmohammadi S, Balalaie S. Tetrhedron Lett, 2007, 48: 3299

    14. [14]

      [14] Gao S, Tsai C H, Tseng C, Yao C F. Tetrahedron, 2008, 64: 9143

    15. [15]

      [15] Seifi M, Sheibani H. Catal Lett, 2008, 126: 275

    16. [16]

      [16] Hekmatshoar R, Majedi S, Bakhtiari K. Catal Commun, 2008, 9: 307

    17. [17]

      [17] Ren Y M, Cai C. Catal Commun, 2008, 9: 1017

    18. [18]

      [18] Heravi M M, Jani B A, Derikvand F, Bamoharram F F, Oskooie H A. Catal Commun, 2008, 10: 272

    19. [19]

      [19] Khurana J M, Kumar S. Tetrahedron Lett, 2009, 50: 4125

    20. [20]

      [20] Sabitha G, Arundhathi K, Sudhakar K, Sastry B S, Yadav J S. Synth Commun, 2009, 39: 433

    21. [21]

      [21] Sun W B, Zhang P, Fan J, Chen S H, Zhang Z H. Synth Commun, 2010, 40: 587

    22. [22]

      [22] Wang L M, Shao J H, Tian H, Wang Y H, Liu B. J Fluorine Chem, 2006, 127: 97

    23. [23]

      [23] Khodaei M M, Bahrami K, Farrokhi A. Synth Commun, 2010, 40: 1492

    24. [24]

      [24] Fang D, Zhang H B, Liu Z L. J Heterocycl Chem, 2010, 47: 63

    25. [25]

      [25] Li Y C, Chen H, Shi C L, Shi D Q, Ji S J. J Comb Chem, 2010, 12: 231

    26. [26]

      [26] Katkar S S, Lande M K, Arbad B R, Gaikwad S T. Chin J Chem, 2011, 29: 199

    27. [27]

      [27] Zheng J, Li Y Q. Scholar Research Library, 2011, 3: 381

    28. [28]

      [28] Salvi P P, Mandhare A M, Sartape A S, Pawar D K, Han S H, Kolekar S S. C R Chim, 2011, 14: 878

    29. [29]

      [29] Karami B, Kiani M, Ahmad Hoseini M. Chin J Catal (催化学报), 2014, 35: 1206

    30. [30]

      [30] Wei J W, Guo W G, Zhang B Y, Liu Y, Li C. Chin J Catal (催化学报), 2014, 35: 1008

    31. [31]

      [31] Hazeri N, Maghsoodlou M T, Mir F, Kangani M, Saravani H, Mollashahi E. Chin J Catal (催化学报), 2014, 35: 391

    32. [32]

      [32] Kangani M, Hazeri N, Maghsoodlou M, Salahi S. Res Chem Intermed, 2013, doi: 10.107/s11164-013-1365-z

    33. [33]

      [33] Mousavi M R, Hazeri N, Maghsoodlou M T, Salahi S, Habibi-Khorassani S M. Chin Chem Lett, 2013, 24: 411

    34. [34]

      [34] Noorisadeh F, Maghsoodlou M T, Hazeri N, Kangani M. Res Chem Intermed, 2014, doi:10.1007/s11164-014-1710-x

    35. [35]

      [35] Habibi-Khorassani S M, Ebrahimi A, Maghsoodlou M T, Asheri O, Shahraki M, Akbarzadeh N, Ghalandarzehi Y. Int J Chem Kinet, 2013, 45: 596

    36. [36]

      [36] Habibi-Khorassani S M, Maghsoodlou M T, Ebrahimi A, Farahani F V, Mosaddeg E, Kazemain M A. Tetrahedron Letters, 2009, 50: 3621

    37. [37]

      [37] Habibi-Khorassani S M, Ebrahimi A, Maghsoodlou M T, Zakarianezhad M, Ghasempour H, Ghahghayi Z. Curr Org Chem, 2011, 15: 942

    38. [38]

      [38] Dehdab M, Habibi-Khorassani S M, Shahraki M. Catal Lett, 2014, 144: 1790

    39. [39]

      [39] Jin T S, Wang A Q, Wang X, Zhang J S, Li T S. Synlett, 2004: 871

    40. [40]

      [40] Gurumurthi S, Sundari V, Valliappan R. E-J Chem, 2009, 6: S466

    41. [41]

      [41] Schwartz L M, Gelb R I. Anal Chem, 1978, 50: 1592

  • 加载中
    1. [1]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    2. [2]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    3. [3]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    4. [4]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    5. [5]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    6. [6]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    7. [7]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    8. [8]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    11. [11]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    12. [12]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    13. [13]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    14. [14]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    15. [15]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    16. [16]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    17. [17]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    18. [18]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    19. [19]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    20. [20]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

Metrics
  • PDF Downloads(0)
  • Abstract views(350)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return