Citation: Manpreet Kaur, Sahil Sharma, Preet M. S. Bedi. Silica supported Brönsted acids as catalyst in organic transformations: A comprehensive review[J]. Chinese Journal of Catalysis, ;2015, 36(4): 520-549. doi: 10.1016/S1872-2067(14)60299-0 shu

Silica supported Brönsted acids as catalyst in organic transformations: A comprehensive review

  • Corresponding author: Sahil Sharma, 
  • Received Date: 11 November 2014
    Available Online: 13 January 2015

    Fund Project:

  • Brönsted acid catalysts have been used in a number of organic transformations. To overcome limitations, such as toxicity, volatility, high price and hazardous nature of the conventional methods, the catalysts are adsorbed on silica gel to give the benefits and advantages of ready availability, simple work-up procedure, long catalytic life, environment-friendliness, good to excellent yields and recyclability. The uses of such catalysts have gained importance worldwide. This article describes some of the important silicated catalysts, namely, heteropolyacids, polyphosphoric acid, perchloric acid, fluoroboric acid, and silicated sulphuric acid. These catalysts have been used in a number of organic reactions to yield compounds that are important in the chemical and pharmaceutical industries. We summarize the beneficial effects of these catalysts and the reports that have been published on them in the past several years. In the present review, the description of the catalysts are introduced followed by a recent research history, and a comparison between the silica supported catalysts and other (polymer) supported catalysts. The article ends up giving the advantages of these catalytic systems over the conventional catalyst.
  • 加载中
    1. [1]

      [1] Salehi P, Zolfigol M A, Fard M A B. Tetrahedron Lett, 2003, 44: 2889

    2. [2]

      [2] Bandgar B P, Patil A V. Tetrahedron Lett, 2007, 48: 173

    3. [3]

      [3] Kamble V T, Bandgar B P, Mule D B, Joshi N S. J Mol Catal A, 2007, 268: 70

    4. [4]

      [4] Singh D U, Singh P R, Samant S D. Tetrahedron Lett, 2004, 45: 4805

    5. [5]

      [5] Yadav J S, Satyanarayana M, Balanarsaiah E, Raghavendra S. Tetrahedron Lett, 2006, 47: 6095

    6. [6]

      [6] Rafiee E, Rashidzadeh S, Azad A. J Mol Catal A, 2007, 261: 49

    7. [7]

      [7] Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Hojati S F. Polyhedron, 2008, 27: 750

    8. [8]

      [8] Khan A B, Choudhury L H, Ghosh S. J Mol Catal A, 2006, 255: 230

    9. [9]

      [9] Dara S, Saikam V, Yadav M, Singh P P, Vishwakarma R A. Carbohydr Res, 2014, 391: 93

    10. [10]

      [10] Das B, Venkateswarlu K, Majhi A, Reddy M R, Reddy K N, Rao Y K, Ravikumar K, Sridhar B. J Mol Catal A, 2006, 246: 276

    11. [11]

      [11] Kiasat A R, Zayadi M, Mehrjardi M F. Chin Chem Lett, 2008, 19: 665

    12. [12]

      [12] Eshghi H, Hassankhani A. J Korean Chem Soc, 2007, 51: 361

    13. [13]

      [13] Rafiee E, Shahbazi F. J Mol Catal A, 2006, 250: 57

    14. [14]

      [14] Lana E J L, da Silva Rocha K A, Kozhevnikov I V, Gusevskaya E V. J Mol Catal A, 2006, 259: 99

    15. [15]

      [15] Rafiee E, Joshaghani M, Tork F, Fakhri A, Eavani S. J Mol Catal A, 2008, 283: 1

    16. [16]

      [16] Rafiee E, Paknezhad F, Shahebrahimi S, Joshaghani M, Eavani S, Rashidzadeh S. J Mol Catal A, 2008, 282: 92

    17. [17]

      [17] Yadav J S, Reddy B V S, Pandurangam T, Rao K V R, Praneeth K, Kumar G G K S N, Madavi C, Kunwar A C. Tetrahedron Lett, 2008, 49: 4296

    18. [18]

      [18] Liu Y, Xu L, Xu B, Li Z, Jia L, Guo W. J Mol Catal A, 2009, 297: 86

    19. [19]

      [19] Rafiee E, Eavani S, Rashidzadeh S, Joshaghani M. Inorg Chim Acta, 2009, 362: 3555

    20. [20]

      [20] Parida K M, Rana S, Mallick S, Rath D. J Colloid Interface Sci, 2010, 350: 132

    21. [21]

      [21] Rafiee E, Khodayaria M, Shahebrahimia S, Joshaghania M. J Mol Catal A, 2011, 351: 204

    22. [22]

      [22] Murugan K, Srimurugan S, Chen C. Tetrahedron, 2011, 67: 5621

    23. [23]

      [23] Liu P N, Xia F, Zhao Z L, Wang Q W, Pen Y J. Tetrahedron Lett, 2011, 52: 6113

    24. [24]

      [24] Rafiee E, Khodayaria M, Kahrizia M, Tayebeeb R. J Mol Catal A, 2012, 358: 121

    25. [25]

      [25] Ghanbaripour R, Mohammadpoor-Baltork I, Moghadam M, Khosropour A R, Tangestaninejad S, Mirkhani V. Polyhedron, 2012, 31: 721

    26. [26]

      [26] Xie S L, Hui Y H, Long X J, Wang C C, Xie Z F. Chin Chem Lett, 2013, 24: 28

    27. [27]

      [27] Ahmed A I, Samra S E, El-Hakama S A, Khderb A S, El-Shenawya H Z, Abo El-Yazeeda W S. Appl Surf Sci, 2013, 282: 217

    28. [28]

      [28] Kantevari S, Bantu R, Nagarapu L. J Mol Catal A, 2007, 269: 53

    29. [29]

      [29] Shaterian H R, Hosseinian A, Ghashang M. Synth Commun, 2008, 38: 3375

    30. [30]

      [30] Shaterian H R, Hosseinian A, Ghashang M. Arkivoc, 2009, (ii): 59

    31. [31]

      [31] Zeinali-Dastmalbaf M, Davoodnia A, Heravi M M, Tavakoli-Hoseini N, Khojastehnezhad A, Zamani H A. Bull Korean Chem Soc, 2011, 32: 656

    32. [32]

      [32] Khojastehnezhad A, Moeinpour F, Davoodnia A. Chin Chem Lett, 2011, 22: 807

    33. [33]

      [33] Davoodnia A, Allameh S, Fazli S, Hoseini N T. Chem Pap, 2011, 65: 714

    34. [34]

      [34] Itoh K, Aoyama T, Satoh H, Fujii Y, Sakamak H, Takido T, Kodomari M. Tetrahedron Lett, 2011, 52: 6892

    35. [35]

      [35] Bamoniri A, Mirjalili B F, Nazemian S. J Nano Struct, 2012, 2: 101

    36. [36]

      [36] Manolov S, Nikolova S, Ivanov I. Molecules, 2013, 18: 1869

    37. [37]

      [37] Shafiee M R M. J Saudi Chem Soc, 2014, 18: 115

    38. [38]

      [38] Misra A K, Tiwari P, Madhusudan S K. Carbohydr Res, 2005, 340: 325

    39. [39]

      [39] Mukhopahyay B, Russell D A, Field R A. Carbohydr Res, 2005, 340: 1075

    40. [40]

      [40] Du Y, Wei G, Cheng S, Hua Y, Linhardt R J. Tetrahedron Lett, 2006, 47: 307

    41. [41]

      [41] Tiwari P, Misra A K. Tetrahedron Lett, 2006, 47: 3573

    42. [42]

      [42] Agnihotri G, Misra A K. Tetrahedron Lett, 2006, 47: 3653

    43. [43]

      [43] Bigdeli M A, Heravi M M, Mahdavinia G H. J Mol Catal A, 2007, 275: 25

    44. [44]

      [44] Kantevari S, Vuppalapati S V N, Biradar D O, Nagarapu L. J Mol Catal A, 2007, 266: 109

    45. [45]

      [45] Narasimhulu M, Reddy T S, Mahesh K C, Prabhakar P, Rao C B, Venkateswarlu Y. J Mol Catal A, 2007, 266: 114

    46. [46]

      [46] Nagarapu L, Paparaju V, Pathuri G, Kantevari S, Pakkiru R R, Kamalla R. J Mol Catal A, 2007, 267: 53

    47. [47]

      [47] Khatik G L, Sharma G, Kumar R, Chakraborti A K. Tetrahedron, 2007, 63: 1200

    48. [48]

      [48] Kantevari S, Bantu R, Nagarapu L. J Mol Catal A, 2007, 269: 53

    49. [49]

      [49] Shaterian H R, Shahrekipoor F, Ghashang M. J Mol Catal A, 2007, 272: 142

    50. [50]

      [50] Das B, Venkateswarlu K, Suneel K, Majhi A. Tetrahedron Lett, 2007, 48: 5371

    51. [51]

      [51] Modarresi-Alam A R, Khamooshi F, Nasrollahzadeh M, Amirazizi H A. Tetrahedron, 2007, 63: 8723

    52. [52]

      [52] Bigdeli M A, Nemati F, Mahdavinia G H. Tetrahedron Lett, 2007, 48: 6801

    53. [53]

      [53] Shaterian H R, Yarahmadi H, Ghashang M. Tetrahedron, 2008, 64: 1263

    54. [54]

      [54] Mahdavinia G H, Bigdeli M A, Heravi M M. Chin Chem Lett, 2008, 19: 1171

    55. [55]

      [55] Kumar A, Sharma S, Maurya R A. Tetrahedron Lett, 2009, 50: 5937

    56. [56]

      [56] Ludek O R, Gu W, Gildersleeve J C. Carbohydr Res, 2010, 345: 2074

    57. [57]

      [57] Maghsoodlou M T, Habibi-Khorassani S M, Heydari R, Hazeri N, Sajadikhah S S, Rostamizadeh M. Arab J Chem, 2011, 4: 481

    58. [58]

      [58] Du T J, Wu Q P, Liu H X, Chen X, Shu Y N, Xi X D, Zhang Q S, Li Y Z. Tetrahedron, 2011, 67: 1096

    59. [59]

      [59] Das B, Reddy P R, Sudhakar C, Lingaiah M. Tetrahedron Lett, 2011, 52: 3521

    60. [60]

      [60] Murugan K, Chen C. Tetrahedron Lett, 2011, 52: 5827

    61. [61]

      [61] Chun Y, Yan S, Li X, Ding N, Zhang W, Wang P, Li M, Li Y. Tetrahedron Lett, 2011, 52: 6196

    62. [62]

      [62] Ansari M I, Hussain M K, Yadav N, Gupta P K, Hajela K. Tetrahedron Lett, 2012, 53: 2063

    63. [63]

      [63] Chakraborti A K, Gulhane R. Tetrahedron Lett, 2003, 44: 3521

    64. [64]

      [64] Bandgar B P, Patil A V, Chavan O S. J Mol Catal A, 2006, 256: 99

    65. [65]

      [65] Kamble V T, Bandgar B P, Muley D B, Joshi N S. J Mol Catal A, 2007, 268: 70

    66. [66]

      [66] Bandgar B P, Patil A V. Tetrahedron Lett, 2007, 48: 173

    67. [67]

      [67] Bandgar B P, Patil A V, Kamble V T, Totre J V. J Mol Catal A, 2007, 273: 114

    68. [68]

      [68] Sharma G, Kumar R, Chakraborti A K. Tetrahedron Lett, 2008, 49: 4272

    69. [69]

      [69] Bandgar B P, Gawande S S, Warangkar S C, Totre J V. Bioorg Med Chem, 2010, 18: 3618

    70. [70]

      [70] Sharma S, Sharma K, Ojha R, Kumar D, Singh G, Nepali K, Bedi P M S. Bioorg Med Chem Lett, 2014, 24: 495

    71. [71]

      [71] Shukla S, Kumar D, Ojha R, Gupta M K, Nepali K, Bedi P M S. Arch Pharm, 2014, 347: 486

    72. [72]

      [72] Rajput V K, Roy B, Mukhopadhyay B. Tetrahedron Lett, 2006, 47: 6987

    73. [73]

      [73] Niknam K, Zolfigol M A, Khorramabadi-Zad A, Zare R, Shayegh M. Catal Commun, 2006, 7: 494

    74. [74]

      [74] Gawande M B, Polshettiwar V, Varma R S, Jayarama R V. Tetrahedron Lett, 2007, 48: 8170

    75. [75]

      [75] Roy B, Mukhopadhyay B. Tetrahedron Lett, 2007, 48: 3783

    76. [76]

      [76] Zhou J F, Chen X, Wang Q B, Zhang B, Zhang L Y, Yusulf A, Wang Z F, Zhang J B, Tang J. Chin Chem Lett, 2010, 21: 922

    77. [77]

      [77] Safari J, Banitaba S H, Khalili S D. Arab J Chem, 2011, 4: 11

    78. [78]

      [78] Modarresi-Alam A R, Inaloo I D, Kleinpeter E. J Mol Struct, 2012, 1024: 156

    79. [79]

      [79] Bakherad M, Keivanloo A, Siavashi M, Omidian M. Chin Chem Lett, 2014, 25: 149

    80. [80]

      [80] Zolfigol M A. Tetrahedron, 2001, 57: 9509

    81. [81]

      [81] Pore D M, Soudagar M S, Desai U V, Thopatea T S, Wadagaonkar P P. Tetrahedron Lett, 2006, 47: 9325

    82. [82]

      [82] Niknam K, Karami B, Zolfigol M A. Catal Commun, 2007, 8: 1427

    83. [83]

      [83] Wu H, Shen Y, Fan L Y, Wan Y, Zhang P, Chen C F, Wang W X. Tetrahedron, 2007, 63: 2404

    84. [84]

      [84] Modarresi-Alam A R, Nasrollahzadeh M, Khamooshi F. Arkivoc, 2007, 16: 238

    85. [85]

      [85] Khalafi-Nezhad A, Parhami A, Navid M, Rad S, Zolfigol M A, Zare A. Tetrahedron Lett, 2007, 48: 5219

    86. [86]

      [86] Mohammadpoor-Baltork I, Mirkhani V, Moghadam M, Tangestaninejad S, ZolFigol M A, Alibeik M A, Khosropour A R, Kargar H, Hojati S F. Catal Commun, 2008, 9: 894

    87. [87]

      [87] Shaterian H R, Ghashang M, Feyzi M. Appl Catal A, 2008, 345: 128

    88. [88]

      [88] Massah A R, Adibi H, Khodarahmi R, Abiri R, Majnooni M B, Shahidi S, Asadi B, Mehrabib M, Zolfigol M A. Bioorg Med Chem, 2008, 16: 5465

    89. [89]

      [89] Zolfigol M A, Chehardoli G, Dehghanian M, Niknam K, Shirinid F, Khoramabadi-Zada A. J Chin Chem Soc, 2008, 55: 885

    90. [90]

      [90] Zolfigol M A, Salehi P, Shiri M, Sayadi A, Abdoli A, Keypour H, Rezaeivala M, Niknam K, Kolvari E. Mol Divers, 2008, 12: 203

    91. [91]

      [91] Wang Y, Yuan Y Q, Guo S R. Molecules, 2009, 14: 4779

    92. [92]

      [92] Zarei A, Hajipour A R, Khazdooz L, Mirjalili B F, Chermahini A N. Dyes Pigm, 2009, 81: 240

    93. [93]

      [93] Veisi H. Tetrahedron Lett, 2010, 51: 2109

    94. [94]

      [94] Li J T, Meng X T, Bai B, Xuan M. Sun Ultrason Sonochem, 2010, 17: 14

    95. [95]

      [95] Niknam K, Mirzaee S. Synth Commun, 2011, 41: 2403

    96. [96]

      [96] Mansoor S S, Aswin K, Logaiya K, Sudhan S P N. J Taibah Univ Science, 2014, 8: 265

    97. [97]

      [97] De Vos D, Vankelecom I F J, Jacobs P A eds. Chiral Catalyst Immobilization and Recycling. Weinheim: Wiley-VCH, 2000

    98. [98]

      [98] Fan Q H, Wang R, Chan A S C. Bioorg Med Chem Lett, 2002, 12: 1867

    99. [99]

      [99] Saluzzo C, Lamouille T, Herault D, Lemaire M. Bioorg Med Chem Lett, 2002, 12: 1841

    100. [100]

      [100] Inamdar S M, More V K, MandalS K. Tetrahedron Lett, 2013, 54: 579

    101. [101]

      [101] Pedrosa R, Andres J M, Gamarra A, Manzano R, Perez-Lopez C. Tetrahedron, 2013, 69: 10811

    102. [102]

      [102] Movassagh B, Rezaei N. Tetrahedron, 2014, 70: 8885

    103. [103]

      [103] Bodhak C, Kundu A, Pramanik A. Tetrahedron Lett, 2015, 56: 419

    104. [104]

      [104] Yoon H J, Lee S M, Kim J H, Cho H J, Choi J W, Lee S H, Lee Y S. Tetrahedron Lett, 2008, 49: 3165

    105. [105]

      [105] Guha N R, Bhattacherjee D, Das P. Tetrahedron Lett, 2014, 55: 2912

    106. [106]

      [106] Kell R J, Hodge P, Nisar M, Watson D. Bioorg Med Chem Lett, 2002, 12: 1803

    107. [107]

      [107] Salehi P, Zolfigol M A, Shirini F, Baghbanzadeh M. Curr Org Chem, 2006, 10: 2171

  • 加载中
    1. [1]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    2. [2]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    3. [3]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    4. [4]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    5. [5]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    6. [6]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    7. [7]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    8. [8]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    9. [9]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    10. [10]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    11. [11]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    12. [12]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    13. [13]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    14. [14]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    15. [15]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    16. [16]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    17. [17]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    18. [18]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    19. [19]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    20. [20]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

Metrics
  • PDF Downloads(459)
  • Abstract views(643)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return