Citation:
Qiang Sun, Xiang-Qian Zhang, Yang Wang, An-Hui Lu. Recent progress on core-shell nanocatalysts[J]. Chinese Journal of Catalysis,
;2015, 36(5): 683-691.
doi:
10.1016/S1872-2067(14)60298-9
-
-
-
[1]
[1] Zhang Q, Lee I, Joo J B, Zaera F, Yin Y D. Acc Chem Res, 2013, 46: 1816
-
[2]
[2] Lee I, Albiter M A, Zhang Q, Ge J P, Yin Y D, Zaera F. Phys Chem Chem Phys, 2011, 13: 2449
-
[3]
[3] Goesmann H, Feldmann C. Angew Chem Int Ed, 2010,49: 1362
-
[4]
[4] Mitsudome T, Takahashi Y, Ichikawa S, Mizugaki T, Jitsukawa K, Kaneda K. Angew Chem Int Ed, 2013, 52: 1481
-
[5]
[5] Das S, Asefa T. Top Catal, 2012, 55: 587
-
[6]
[6] Yao T J, Cui T Y, Fang X, Cui F, Wu J. Nanoscale, 2013, 5: 5896
-
[7]
[7] Yang H Q, Li G, Ma Z C. J Mater Chem, 2012, 22: 6639
-
[8]
[8] Yao T J, Cui T Y, Wu J, Chen Q Z, Yin X J, Cui F, Sun K N. Carbon, 2012, 50: 2287
-
[9]
[9] Jiang K, Zhang H X, Yang Y Y, Mothes R, Lang H, Cai W B. Chem Commun, 2011, 47: 11924
-
[10]
[10] Li Y, Kim Y J, Kim A Y, Lee K, Jung M H, Hur N H, Park K H, Seo W S. Chem Mater, 2011, 23: 5398
-
[11]
[11] Ji J H, Zeng P H, Ji S F, Yang W, Liu H F, Li Y Y. Catal Today, 2010, 158: 305
-
[12]
[12] Liu J, Qiao S Z, Hartono S B, Lu G Q M. Angew Chem Int Ed, 2010, 49: 4981
-
[13]
[13] Chen Z, Cui Z M, Niu F, Jiang L, Song W G. Chem Commun, 2010, 46: 6524
-
[14]
[14] Mitsudome T, Kaneda K. ChemCatChem, 2013, 5: 1681
-
[15]
[15] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P D, Somorjai G A. Nat Mater, 2009, 8: 126
-
[16]
[16] Schärtl W. Nanoscale, 2010, 2: 829
-
[17]
[17] Caruso F. Adv Mater, 2001, 13: 11
-
[18]
[18] Reiss P, Protière M, Li L. Small, 2009, 5: 154
-
[19]
[19] Kamata K, Lu Y, Xia Y N. J Am Chem Soc, 2003, 125: 2384
-
[20]
[20] Lee I, Joo J B, Yin Y D, Zaera F. Angew Chem Int Ed, 2011, 50: 10208
-
[21]
[21] Dillon R J, Joo J B, Zaera F, Yin Y D, Bardeen C J. Phys Chem Chem Phys, 2013, 15: 1488
-
[22]
[22] Sreekumaran Nair A, Pradeep T, MacLaren I. J Mater Chem, 2004, 14: 857
-
[23]
[23] Guan B Y, Wang T, Zeng S J, Wang X, An D, Wang D M, Cao Y, Ma D X, Liu Y L, Huo Q S. Nano Res, 2014, 7: 246
-
[24]
[24] Güttel R, Paul M, Schüth F. Catal Sci Technol, 2011, 1: 65
-
[25]
[25] Arnal P M, Comotti M, Schüth F. Angew Chem Int Ed, 2006, 45: 8224
-
[26]
[26] Chen C, Fang X L, Wu B H, Huang L J, Zheng N F. ChemCatChem, 2012, 4: 1578
-
[27]
[27] Liang X L, Li J, Joo J B, Gutiérrez A, Tillekaratne A, Lee I, Yin Y D, Zaera F. Angew Chem Int Ed, 2012, 51: 8034
-
[28]
[28] Lee J, Park J C, Song H. Adv Mater, 2008, 20: 1523
-
[29]
[29] Lee J, Park J C, Bang J U, Song H. Chem Mater, 2008, 20: 5839
-
[30]
[30] Park J C, Bang J U, Lee J, Ko C H, Song H. J Mater Chem, 2010, 20: 1239
-
[31]
[31] Liu C M, Guo L, Wang R M, Deng Y, Xu H B, Yang S H. Chem Commun, 2004: 2726
-
[32]
[32] Zhang Q, Wang W, Goebl J, Yin Y. Nano Today, 2009, 4: 494
-
[33]
[33] Güttel R, Paul M, Schüth F. Chem Commun, 2010, 46: 895
-
[34]
[34] Güttel R, Paul M, Galeano C, Schüth F. J Catal, 2012, 289: 100
-
[35]
[35] Galeano C, Güttel R, Paul M, Arnal P, Lu A H, Schüth F. Chem Eur J, 2011, 17: 8434
-
[36]
[36] Huang X Q, Guo C Y, Zuo J Q, Zheng N F, Stucky G D. Small, 2009, 5: 361
-
[37]
[37] Chen Z, Cui Z M, Niu F, Jiang L, Song W G. Chem Commun, 2010, 46: 6524
-
[38]
[38] Chen Z, Cui Z M, Li P, Cao C Y, Hong Y L, Wu Z Y, Song W G. J Phys Chem C, 2012, 116: 14986
-
[39]
[39] Tan L F, Chen D, Liu H Y, Tang F Q. Adv Mater, 2010, 22: 4885
-
[40]
[40] Zhang X M, Zhao Y P, Xu S T, Yang Y, Liu J, Wei Y X, Yang Q H. Nat Commun, 2014, 5: 3170
-
[41]
[41] Zhang X M, Zhao Y P, Yang Q H. J Catal, 2014, 320: 180
-
[42]
[42] Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Angew Chem Int Ed, 2013, 52: 371
-
[43]
[43] Poliakoff M, Fitzpatrick J M, Farren T R, Anastas P T. Science, 2002, 297: 807
-
[44]
[44] Liu J, Yang H Q, Kleitz F, Chen Z G, Yang T Y, Strounina E, Lu G Q M, Qiao S Z. Adv Funct Mater, 2012, 22: 591
-
[45]
[45] Sheldon R A, van Bekkum H. Fine Chemicals through Heterogeneous Catalysis. Weinheim: Wiley-VCH, 2001
-
[46]
[46] Jacinto M J, Santos O H C F, Jardim R F, Landers R, Rossi L M. Appl Catal A, 2009, 360: 177
-
[47]
[47] Lu A H, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F. Angew Chem Int Ed, 2004, 43: 4303
-
[48]
[48] Tsang S C, Caps V, Parakevas I, Chadwick D, Thompsett D. Angew Chem Int Ed, 2004, 43: 5645
-
[49]
[49] Lapresta-Fernández A, Doussineau T, Moro A J, Dutz S, Steiniger F, Mohr G J. Anal Chim Acta, 2011, 707: 164
-
[50]
[50] Zhang X L, Niu H Y, Li W H, Shi Y L, Cai Y Q. Chem Commun, 2011, 47: 4454
-
[51]
[51] Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z. Chem Commun, 2011, 47: 5732
-
[52]
[52] Salgueiriño-Maceira V, Correa-Duarte M A, Spasova M, Liz-Marzán L M, Farle M. Adv Funct Mater, 2006, 16: 509
-
[53]
[53] Guo W C, Wang Q, Wang G, Yang M, Dong W J, Yu J. Chem Asian J, 2013, 8: 1160
-
[54]
[54] Shylesh S, Schünemann V, Thiel W R. Angew Chem Int Ed, 2010, 49: 3428
-
[55]
[55] Aschwanden L, Panella B, Rossbach P, Keller B, Baiker A. ChemCatChem, 2009, 1: 111
-
[56]
[56] Salgueiriño-Maceira V, Correa-Duarte M A, Farle M, López-Quintela A, Sieradzki K, Diaz R. Chem Mater, 2006, 18: 2701
-
[57]
[57] Bedford R B, Betham M, Bruce D W, Davis S A, Frost R M, Hird M. Chem Commun, 2006: 1398
-
[58]
[58] Li J, Liang X L, Joo J B, Lee I, Yin Y D, Zaera F. J Phys Chem C, 2013, 117: 20043
-
[59]
[59] Goebl J, Yin Y D. ChemCatChem, 2013, 5: 1287
-
[60]
[60] Liang X L, Li J, Joo J B, Gutiérrez A, Tillekaratne A, Lee I, Yin Y D, Zaera F. Angew Chem Int Ed, 2012, 51: 8034
-
[61]
[61] Ye M M, Zhang Q, Hu Y X, Ge J P, Lu Z D, He L, Chen Z L, Yin Y D. Chem Eur J, 2010, 16: 6243
-
[62]
[62] Ge J P, Hu Y X, Biasini M, Beyermann W P, Yin Y D. Angew Chem Int Ed, 2007, 46: 4342
-
[63]
[63] Ge J P, Zhang Q, Zhang T R, Yin Y D. Angew Chem Int Ed, 2008, 47: 8924
-
[64]
[64] Feyen M, Weidenthaler C, Güttel R, Schlichte K, Holle U, Lu A H, Schüth F. Chem Eur J, 2011, 17: 598
-
[65]
[65] Deng Y H, Cai Y, Sun Z K, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D Y. J Am Chem Soc, 2010, 132: 8466
-
[66]
[66] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Angew Chem Int Ed, 2008, 47: 8438
-
[67]
[67] Yeo K M, Shin J, Lee I S. Chem Commun, 2010, 46: 64
-
[68]
[68] Barmatova M V, Ivanchikova I D, Kholdeeva O A, Shmakov A N, Zaikovskii V I, Meĺgunov M S. J Mater Chem, 2009, 19: 7332
-
[69]
[69] Wu Z J, Sun C X, Chai Y, Zhang M H. RSC Adv, 2011, 1: 1179
-
[70]
[70] Feyen M, Weidenthaler C, Schüth F, Lu A H. J Am Chem Soc, 2010, 132: 6791
-
[71]
[71] Lu A H, Nitz J J, Comotti M, Weidenthaler C, Schlichte K, Lehmann C W, Terasaki O, Schüth F. J Am Chem Soc, 2010, 132: 14152
-
[72]
[72] Sun Q, Guo C Z, Wang G H, Li W C, Bongard H J, Lu A H. Chem Eur J, 2013, 19: 6217
-
[73]
[73] Feyen M, Weidenthaler C, Schüth F, Lu A H. Chem Mater, 2010, 22: 2955
-
[74]
[74] Polshettiwar V, Luque R, Fihri A, Zhu H B, Bouhrara M, Basset J M. Chem Rev, 2011, 111: 3036
-
[75]
[75] Jia C J, Schüth F. Phys Chem Chem Phys, 2011, 13: 2457
-
[76]
[76] Noda H, Motokura K, Miyaji A, Baba T. Angew Chem Int Ed, 2012, 51: 8017
-
[77]
[77] Fraile J M, García N, Herrerías C I, Martín M, Mayoral J A. ACS Catal, 2012, 2: 56
-
[78]
[78] Sharma K K, Biradar A V, Das S, Asefa T. Eur J Inorg Chem, 2011, (21): 3174
-
[79]
[79] Climent M J, Corma A, Iborra S. Chem Rev, 2011, 111: 1072
-
[80]
[80] Albrecht Ł, Jiang H, Jörgensen K A. Angew Chem Int Ed, 2011, 50: 8492
-
[81]
[81] Shiju N R, Alberts A H, Khalid S, Brown D R, Rothenberg G. Angew Chem Int Ed, 2011, 50: 9615
-
[82]
[82] Huang Y L, Xu S, Lin V S Y. Angew Chem Int Ed, 2011, 50: 661
-
[83]
[83] Zeidan R K, Hwang S J, Davis M E. Angew Chem Int Ed, 2006, 45: 6332
-
[84]
[84] Shylesh S, Wagener A, Seifert A, Ernst S, Thiel W R. Angew Chem Int Ed, 2010, 49: 184
-
[85]
[85] Peng H G, Xu L, Zhang L Y, Zhang K, Liu Y M, Wu H H, Wu P. J Mater Chem, 2012, 22: 14219
-
[86]
[86] Ren N, Yang Y H, Zhang Y H, Wang Q R, Tang Y. J Catal, 2007, 246: 215
-
[87]
[87] Tan L F, Chen D, Liu H Y, Tang F Q. Adv Mater, 2010, 22: 4885
-
[88]
[88] Salgueiriño-Maceira V, Correa-Duarte M A. Adv Mater, 2007, 19: 4131
-
[89]
[89] Chaudhuri R G, Paria S. Chem Rev, 2012, 112: 2373
-
[90]
[90] Wei S Y, Wang Q, Zhu J H, Sun L Y, Lin H F, Guo Z H. Nanoscale, 2011, 3: 4474
-
[91]
[91] Liu J, Qiao S Z, Chen J S, Lou X W, Xing X R, Lu G Q M. Chem Commun, 2011, 47: 12578
-
[92]
[92] Ren N, Yang Y H, Shen J, Zhang Y H, Xu H L, Gao Z, Tang Y. J Catal, 2007, 251: 182
-
[93]
[93] Yang H Q, Chong Y Z, Li X K, Ge H, Fan W B, Wang J G. J Mater Chem, 2012, 22: 9069
-
[94]
[94] Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T. Angew Chem Int Ed, 2007, 46: 7039
-
[95]
[95] Dong H J, Brennan J D. Chem Commun, 2011, 47: 1207
-
[96]
[96] Zhang Q, Lee I, Ge J P, Zaera F, Yin Y D. Adv Funct Mater, 2010, 20: 2201
-
[97]
[97] Yang Y, Liu X, Li X B, Zhao J, Bai S Y, Liu J, Yang Q H. Angew Chem Int Ed, 2012, 51: 9164
-
[98]
[98] Pinkaew K, Yang G H, Vitidsant T, Jin Y Z, Zeng C Y, Yoneyama Y, Tsubaki N. Fuel, 2013, 111: 727
-
[99]
[99] Li P, Cao C Y, Liu H, Yu Y, Song W G. J Mater Chem A, 2013, 1: 12804
-
[100]
[100] Peng H G, Xu L, Zhang L Y, Zhang K, Liu Y M, Wu H H, Wu P. J Mater Chem, 2012, 22: 14219
-
[101]
[101] Peng H G, Xu L, Wu H H, Zhang K, Wu P. Chem Commun, 2013, 49: 2709
-
[102]
[102] Fang X L, Liu Z H, Hsieh M F, Chen M, Liu P X, Chen C, Zheng N F. ACS Nano, 2012, 6: 4434
-
[103]
[103] Bellina F, Calandri C, Cauteruccio S, Rossi R. Tetrahedron. 2007, 63: 1970
-
[104]
[104] Voit B. Angew Chem Int Ed, 2006, 45: 4238
-
[105]
[105] Thomas J M, Raja R, Lewis D W. Angew Chem Int Ed, 2005, 44: 6456
-
[106]
[106] Kesanli B, Lin W B. Chem Commun, 2004, (20): 2284
-
[107]
[107] Perego C, Millini R. Chem Soc Rev, 2013, 42: 3956
-
[108]
[108] Margelefsky E L, Zeidan R K, Davis M E. Chem Soc Rev, 2008, 37: 1118
-
[109]
[109] Zhang L, Guo Y N, Peng J A, Liu X, Yuan P, Yang Q H, Li C. Chem Commun, 2011, 47: 4087
-
[110]
[110] Sharma K K, Anan A, Buckley R P, Ouellette W, Asefa T. J Am Chem Soc, 2008, 130: 218
-
[111]
[111] Li P, Cao C Y, Chen Z, Liu H, Yu Y, Song W G. Chem Commun, 2012, 48: 10541
-
[112]
[112] Li P, Yu Y, Liu H, Cao C Y, Song W G. Nanoscale, 2014, 6: 442
-
[113]
[113] Jun S W, Shokouhimehr M, Lee D J, Jang Y, Park J, Hyeon T. Chem Commun, 2013, 49: 7821
-
[1]
-
-
-
[1]
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
-
[2]
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
-
[3]
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
-
[4]
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
-
[5]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[6]
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
-
[7]
Binhan Zhao , Zheng Li , Lan Zheng , Zhichao Ye , Yuyang Yuan , Shanshan Zhang , Bo Liang , Tianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810
-
[8]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[9]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100
-
[10]
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
-
[11]
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
-
[12]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[13]
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
-
[14]
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
-
[15]
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
-
[16]
Jun-Yi Wang , Jue-Yu Bao , Zheng-Guang Wu , Zheng-Yin Du , Xunwen Xiao , Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451
-
[17]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[18]
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
-
[19]
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
-
[20]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(279)
- HTML views(3)