Citation: Qiang Sun, Xiang-Qian Zhang, Yang Wang, An-Hui Lu. Recent progress on core-shell nanocatalysts[J]. Chinese Journal of Catalysis, ;2015, 36(5): 683-691. doi: 10.1016/S1872-2067(14)60298-9 shu

Recent progress on core-shell nanocatalysts

  • Corresponding author: An-Hui Lu, 
  • Received Date: 15 February 2015

  • 加载中
    1. [1]

      [1] Zhang Q, Lee I, Joo J B, Zaera F, Yin Y D. Acc Chem Res, 2013, 46: 1816

    2. [2]

      [2] Lee I, Albiter M A, Zhang Q, Ge J P, Yin Y D, Zaera F. Phys Chem Chem Phys, 2011, 13: 2449

    3. [3]

      [3] Goesmann H, Feldmann C. Angew Chem Int Ed, 2010,49: 1362

    4. [4]

      [4] Mitsudome T, Takahashi Y, Ichikawa S, Mizugaki T, Jitsukawa K, Kaneda K. Angew Chem Int Ed, 2013, 52: 1481

    5. [5]

      [5] Das S, Asefa T. Top Catal, 2012, 55: 587

    6. [6]

      [6] Yao T J, Cui T Y, Fang X, Cui F, Wu J. Nanoscale, 2013, 5: 5896

    7. [7]

      [7] Yang H Q, Li G, Ma Z C. J Mater Chem, 2012, 22: 6639

    8. [8]

      [8] Yao T J, Cui T Y, Wu J, Chen Q Z, Yin X J, Cui F, Sun K N. Carbon, 2012, 50: 2287

    9. [9]

      [9] Jiang K, Zhang H X, Yang Y Y, Mothes R, Lang H, Cai W B. Chem Commun, 2011, 47: 11924

    10. [10]

      [10] Li Y, Kim Y J, Kim A Y, Lee K, Jung M H, Hur N H, Park K H, Seo W S. Chem Mater, 2011, 23: 5398

    11. [11]

      [11] Ji J H, Zeng P H, Ji S F, Yang W, Liu H F, Li Y Y. Catal Today, 2010, 158: 305

    12. [12]

      [12] Liu J, Qiao S Z, Hartono S B, Lu G Q M. Angew Chem Int Ed, 2010, 49: 4981

    13. [13]

      [13] Chen Z, Cui Z M, Niu F, Jiang L, Song W G. Chem Commun, 2010, 46: 6524

    14. [14]

      [14] Mitsudome T, Kaneda K. ChemCatChem, 2013, 5: 1681

    15. [15]

      [15] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P D, Somorjai G A. Nat Mater, 2009, 8: 126

    16. [16]

      [16] Schärtl W. Nanoscale, 2010, 2: 829

    17. [17]

      [17] Caruso F. Adv Mater, 2001, 13: 11

    18. [18]

      [18] Reiss P, Protière M, Li L. Small, 2009, 5: 154

    19. [19]

      [19] Kamata K, Lu Y, Xia Y N. J Am Chem Soc, 2003, 125: 2384

    20. [20]

      [20] Lee I, Joo J B, Yin Y D, Zaera F. Angew Chem Int Ed, 2011, 50: 10208

    21. [21]

      [21] Dillon R J, Joo J B, Zaera F, Yin Y D, Bardeen C J. Phys Chem Chem Phys, 2013, 15: 1488

    22. [22]

      [22] Sreekumaran Nair A, Pradeep T, MacLaren I. J Mater Chem, 2004, 14: 857

    23. [23]

      [23] Guan B Y, Wang T, Zeng S J, Wang X, An D, Wang D M, Cao Y, Ma D X, Liu Y L, Huo Q S. Nano Res, 2014, 7: 246

    24. [24]

      [24] Güttel R, Paul M, Schüth F. Catal Sci Technol, 2011, 1: 65

    25. [25]

      [25] Arnal P M, Comotti M, Schüth F. Angew Chem Int Ed, 2006, 45: 8224

    26. [26]

      [26] Chen C, Fang X L, Wu B H, Huang L J, Zheng N F. ChemCatChem, 2012, 4: 1578

    27. [27]

      [27] Liang X L, Li J, Joo J B, Gutiérrez A, Tillekaratne A, Lee I, Yin Y D, Zaera F. Angew Chem Int Ed, 2012, 51: 8034

    28. [28]

      [28] Lee J, Park J C, Song H. Adv Mater, 2008, 20: 1523

    29. [29]

      [29] Lee J, Park J C, Bang J U, Song H. Chem Mater, 2008, 20: 5839

    30. [30]

      [30] Park J C, Bang J U, Lee J, Ko C H, Song H. J Mater Chem, 2010, 20: 1239

    31. [31]

      [31] Liu C M, Guo L, Wang R M, Deng Y, Xu H B, Yang S H. Chem Commun, 2004: 2726

    32. [32]

      [32] Zhang Q, Wang W, Goebl J, Yin Y. Nano Today, 2009, 4: 494

    33. [33]

      [33] Güttel R, Paul M, Schüth F. Chem Commun, 2010, 46: 895

    34. [34]

      [34] Güttel R, Paul M, Galeano C, Schüth F. J Catal, 2012, 289: 100

    35. [35]

      [35] Galeano C, Güttel R, Paul M, Arnal P, Lu A H, Schüth F. Chem Eur J, 2011, 17: 8434

    36. [36]

      [36] Huang X Q, Guo C Y, Zuo J Q, Zheng N F, Stucky G D. Small, 2009, 5: 361

    37. [37]

      [37] Chen Z, Cui Z M, Niu F, Jiang L, Song W G. Chem Commun, 2010, 46: 6524

    38. [38]

      [38] Chen Z, Cui Z M, Li P, Cao C Y, Hong Y L, Wu Z Y, Song W G. J Phys Chem C, 2012, 116: 14986

    39. [39]

      [39] Tan L F, Chen D, Liu H Y, Tang F Q. Adv Mater, 2010, 22: 4885

    40. [40]

      [40] Zhang X M, Zhao Y P, Xu S T, Yang Y, Liu J, Wei Y X, Yang Q H. Nat Commun, 2014, 5: 3170

    41. [41]

      [41] Zhang X M, Zhao Y P, Yang Q H. J Catal, 2014, 320: 180

    42. [42]

      [42] Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Angew Chem Int Ed, 2013, 52: 371

    43. [43]

      [43] Poliakoff M, Fitzpatrick J M, Farren T R, Anastas P T. Science, 2002, 297: 807

    44. [44]

      [44] Liu J, Yang H Q, Kleitz F, Chen Z G, Yang T Y, Strounina E, Lu G Q M, Qiao S Z. Adv Funct Mater, 2012, 22: 591

    45. [45]

      [45] Sheldon R A, van Bekkum H. Fine Chemicals through Heterogeneous Catalysis. Weinheim: Wiley-VCH, 2001

    46. [46]

      [46] Jacinto M J, Santos O H C F, Jardim R F, Landers R, Rossi L M. Appl Catal A, 2009, 360: 177

    47. [47]

      [47] Lu A H, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F. Angew Chem Int Ed, 2004, 43: 4303

    48. [48]

      [48] Tsang S C, Caps V, Parakevas I, Chadwick D, Thompsett D. Angew Chem Int Ed, 2004, 43: 5645

    49. [49]

      [49] Lapresta-Fernández A, Doussineau T, Moro A J, Dutz S, Steiniger F, Mohr G J. Anal Chim Acta, 2011, 707: 164

    50. [50]

      [50] Zhang X L, Niu H Y, Li W H, Shi Y L, Cai Y Q. Chem Commun, 2011, 47: 4454

    51. [51]

      [51] Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z. Chem Commun, 2011, 47: 5732

    52. [52]

      [52] Salgueiriño-Maceira V, Correa-Duarte M A, Spasova M, Liz-Marzán L M, Farle M. Adv Funct Mater, 2006, 16: 509

    53. [53]

      [53] Guo W C, Wang Q, Wang G, Yang M, Dong W J, Yu J. Chem Asian J, 2013, 8: 1160

    54. [54]

      [54] Shylesh S, Schünemann V, Thiel W R. Angew Chem Int Ed, 2010, 49: 3428

    55. [55]

      [55] Aschwanden L, Panella B, Rossbach P, Keller B, Baiker A. ChemCatChem, 2009, 1: 111

    56. [56]

      [56] Salgueiriño-Maceira V, Correa-Duarte M A, Farle M, López-Quintela A, Sieradzki K, Diaz R. Chem Mater, 2006, 18: 2701

    57. [57]

      [57] Bedford R B, Betham M, Bruce D W, Davis S A, Frost R M, Hird M. Chem Commun, 2006: 1398

    58. [58]

      [58] Li J, Liang X L, Joo J B, Lee I, Yin Y D, Zaera F. J Phys Chem C, 2013, 117: 20043

    59. [59]

      [59] Goebl J, Yin Y D. ChemCatChem, 2013, 5: 1287

    60. [60]

      [60] Liang X L, Li J, Joo J B, Gutiérrez A, Tillekaratne A, Lee I, Yin Y D, Zaera F. Angew Chem Int Ed, 2012, 51: 8034

    61. [61]

      [61] Ye M M, Zhang Q, Hu Y X, Ge J P, Lu Z D, He L, Chen Z L, Yin Y D. Chem Eur J, 2010, 16: 6243

    62. [62]

      [62] Ge J P, Hu Y X, Biasini M, Beyermann W P, Yin Y D. Angew Chem Int Ed, 2007, 46: 4342

    63. [63]

      [63] Ge J P, Zhang Q, Zhang T R, Yin Y D. Angew Chem Int Ed, 2008, 47: 8924

    64. [64]

      [64] Feyen M, Weidenthaler C, Güttel R, Schlichte K, Holle U, Lu A H, Schüth F. Chem Eur J, 2011, 17: 598

    65. [65]

      [65] Deng Y H, Cai Y, Sun Z K, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D Y. J Am Chem Soc, 2010, 132: 8466

    66. [66]

      [66] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Angew Chem Int Ed, 2008, 47: 8438

    67. [67]

      [67] Yeo K M, Shin J, Lee I S. Chem Commun, 2010, 46: 64

    68. [68]

      [68] Barmatova M V, Ivanchikova I D, Kholdeeva O A, Shmakov A N, Zaikovskii V I, Meĺgunov M S. J Mater Chem, 2009, 19: 7332

    69. [69]

      [69] Wu Z J, Sun C X, Chai Y, Zhang M H. RSC Adv, 2011, 1: 1179

    70. [70]

      [70] Feyen M, Weidenthaler C, Schüth F, Lu A H. J Am Chem Soc, 2010, 132: 6791

    71. [71]

      [71] Lu A H, Nitz J J, Comotti M, Weidenthaler C, Schlichte K, Lehmann C W, Terasaki O, Schüth F. J Am Chem Soc, 2010, 132: 14152

    72. [72]

      [72] Sun Q, Guo C Z, Wang G H, Li W C, Bongard H J, Lu A H. Chem Eur J, 2013, 19: 6217

    73. [73]

      [73] Feyen M, Weidenthaler C, Schüth F, Lu A H. Chem Mater, 2010, 22: 2955

    74. [74]

      [74] Polshettiwar V, Luque R, Fihri A, Zhu H B, Bouhrara M, Basset J M. Chem Rev, 2011, 111: 3036

    75. [75]

      [75] Jia C J, Schüth F. Phys Chem Chem Phys, 2011, 13: 2457

    76. [76]

      [76] Noda H, Motokura K, Miyaji A, Baba T. Angew Chem Int Ed, 2012, 51: 8017

    77. [77]

      [77] Fraile J M, García N, Herrerías C I, Martín M, Mayoral J A. ACS Catal, 2012, 2: 56

    78. [78]

      [78] Sharma K K, Biradar A V, Das S, Asefa T. Eur J Inorg Chem, 2011, (21): 3174

    79. [79]

      [79] Climent M J, Corma A, Iborra S. Chem Rev, 2011, 111: 1072

    80. [80]

      [80] Albrecht Ł, Jiang H, Jörgensen K A. Angew Chem Int Ed, 2011, 50: 8492

    81. [81]

      [81] Shiju N R, Alberts A H, Khalid S, Brown D R, Rothenberg G. Angew Chem Int Ed, 2011, 50: 9615

    82. [82]

      [82] Huang Y L, Xu S, Lin V S Y. Angew Chem Int Ed, 2011, 50: 661

    83. [83]

      [83] Zeidan R K, Hwang S J, Davis M E. Angew Chem Int Ed, 2006, 45: 6332

    84. [84]

      [84] Shylesh S, Wagener A, Seifert A, Ernst S, Thiel W R. Angew Chem Int Ed, 2010, 49: 184

    85. [85]

      [85] Peng H G, Xu L, Zhang L Y, Zhang K, Liu Y M, Wu H H, Wu P. J Mater Chem, 2012, 22: 14219

    86. [86]

      [86] Ren N, Yang Y H, Zhang Y H, Wang Q R, Tang Y. J Catal, 2007, 246: 215

    87. [87]

      [87] Tan L F, Chen D, Liu H Y, Tang F Q. Adv Mater, 2010, 22: 4885

    88. [88]

      [88] Salgueiriño-Maceira V, Correa-Duarte M A. Adv Mater, 2007, 19: 4131

    89. [89]

      [89] Chaudhuri R G, Paria S. Chem Rev, 2012, 112: 2373

    90. [90]

      [90] Wei S Y, Wang Q, Zhu J H, Sun L Y, Lin H F, Guo Z H. Nanoscale, 2011, 3: 4474

    91. [91]

      [91] Liu J, Qiao S Z, Chen J S, Lou X W, Xing X R, Lu G Q M. Chem Commun, 2011, 47: 12578

    92. [92]

      [92] Ren N, Yang Y H, Shen J, Zhang Y H, Xu H L, Gao Z, Tang Y. J Catal, 2007, 251: 182

    93. [93]

      [93] Yang H Q, Chong Y Z, Li X K, Ge H, Fan W B, Wang J G. J Mater Chem, 2012, 22: 9069

    94. [94]

      [94] Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T. Angew Chem Int Ed, 2007, 46: 7039

    95. [95]

      [95] Dong H J, Brennan J D. Chem Commun, 2011, 47: 1207

    96. [96]

      [96] Zhang Q, Lee I, Ge J P, Zaera F, Yin Y D. Adv Funct Mater, 2010, 20: 2201

    97. [97]

      [97] Yang Y, Liu X, Li X B, Zhao J, Bai S Y, Liu J, Yang Q H. Angew Chem Int Ed, 2012, 51: 9164

    98. [98]

      [98] Pinkaew K, Yang G H, Vitidsant T, Jin Y Z, Zeng C Y, Yoneyama Y, Tsubaki N. Fuel, 2013, 111: 727

    99. [99]

      [99] Li P, Cao C Y, Liu H, Yu Y, Song W G. J Mater Chem A, 2013, 1: 12804

    100. [100]

      [100] Peng H G, Xu L, Zhang L Y, Zhang K, Liu Y M, Wu H H, Wu P. J Mater Chem, 2012, 22: 14219

    101. [101]

      [101] Peng H G, Xu L, Wu H H, Zhang K, Wu P. Chem Commun, 2013, 49: 2709

    102. [102]

      [102] Fang X L, Liu Z H, Hsieh M F, Chen M, Liu P X, Chen C, Zheng N F. ACS Nano, 2012, 6: 4434

    103. [103]

      [103] Bellina F, Calandri C, Cauteruccio S, Rossi R. Tetrahedron. 2007, 63: 1970

    104. [104]

      [104] Voit B. Angew Chem Int Ed, 2006, 45: 4238

    105. [105]

      [105] Thomas J M, Raja R, Lewis D W. Angew Chem Int Ed, 2005, 44: 6456

    106. [106]

      [106] Kesanli B, Lin W B. Chem Commun, 2004, (20): 2284

    107. [107]

      [107] Perego C, Millini R. Chem Soc Rev, 2013, 42: 3956

    108. [108]

      [108] Margelefsky E L, Zeidan R K, Davis M E. Chem Soc Rev, 2008, 37: 1118

    109. [109]

      [109] Zhang L, Guo Y N, Peng J A, Liu X, Yuan P, Yang Q H, Li C. Chem Commun, 2011, 47: 4087

    110. [110]

      [110] Sharma K K, Anan A, Buckley R P, Ouellette W, Asefa T. J Am Chem Soc, 2008, 130: 218

    111. [111]

      [111] Li P, Cao C Y, Chen Z, Liu H, Yu Y, Song W G. Chem Commun, 2012, 48: 10541

    112. [112]

      [112] Li P, Yu Y, Liu H, Cao C Y, Song W G. Nanoscale, 2014, 6: 442

    113. [113]

      [113] Jun S W, Shokouhimehr M, Lee D J, Jang Y, Park J, Hyeon T. Chem Commun, 2013, 49: 7821

  • 加载中
    1. [1]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    2. [2]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    3. [3]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    4. [4]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    5. [5]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    6. [6]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    7. [7]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    8. [8]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    9. [9]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    10. [10]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    11. [11]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    14. [14]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    15. [15]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    16. [16]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    17. [17]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    18. [18]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    19. [19]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    20. [20]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

Metrics
  • PDF Downloads(3)
  • Abstract views(279)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return