Citation: Xuejun Xu, Qiang Fu, Xinhe Bao. MoOx-promoted Pt catalysts for the water gas shift reaction at low temperatures[J]. Chinese Journal of Catalysis, ;2015, 36(5): 750-756. doi: 10.1016/S1872-2067(14)60294-1 shu

MoOx-promoted Pt catalysts for the water gas shift reaction at low temperatures

  • Corresponding author: Qiang Fu,  Xinhe Bao, 
  • Received Date: 15 December 2014
    Available Online: 19 January 2015

    Fund Project: 国家自然科学基金(21222305, 21321001, 21103181) (21222305, 21321001, 21103181) 国家重点基础研究发展计划(973计划, 2013CB834603, 2013CB933100, 2011CBA00503). (973计划, 2013CB834603, 2013CB933100, 2011CBA00503)

  • Pt-Mo/SiO2 catalysts were prepared using impregnation-reduction methods. Mo-promoted Pt catalysts exhibit much higher water gas shift reaction activity at low temperatures than Pt/SiO2 catalysts. Various characterization methods including inductive coupled plasma atomic emission spectrometry, X-ray diffraction, transmission electron microscopy, X-ray absorption near edge spectrum, and X-ray photoelectron spectroscopy were applied to investigate the composition, structure and chemical state of the Pt-Mo/SiO2 catalysts. Our results indicate that the added Mo species effectively improves the dispersion of Pt nanoparticles and the synergistic effect between the Pt nanoparticles and surface MoOx species enhances the catalytic performance for the water gas shift reaction. Pt nanoparticles decorated with highly dispersed MoOx patches are found to be the active architecture.
  • 加载中
    1. [1]

      [1] Guo P J, Chen L F, Yang Q Y, Qiao M H, Li H, Li H X, Xu H L, Fan K N. Int J Hydrogen Energy, 2009, 34: 2361

    2. [2]

      [2] Sagata K, Imazu N, Yahiro H. Catal Today, 2013, 201: 145

    3. [3]

      [3] Iida H, Ogawa D, Kumasaki T, Iida K, Igarashi A. J Chem Eng Jpn, 2012, 45: 46

    4. [4]

      [4] Andreeva D, Idakiev V, Tabakova T, Andreev A, Giovanoli R. J Catal, 1996, 158: 354

    5. [5]

      [5] Tibiletti D, Amieiro-Fonseca A, Burch R, Chen Y, Fisher J M, Goguet A, Hardacre C, Hu P, Thompsett A. J Phys Chem B, 2005, 109: 22553

    6. [6]

      [6] Kim C H, Thompson L T. J Catal, 2005, 230: 66

    7. [7]

      [7] Panagiotopoulou P, Kondarides D I. J Catal, 2004, 225: 327

    8. [8]

      [8] Gonzalez I D, Navarro R M, Alvarez-Galvan M C, Rosa F, Fierro J L G. Catal Commun, 2008, 9: 1759

    9. [9]

      [9] Panagiotopoulou P, Kondarides D I. Catal Today, 2006, 112: 49

    10. [10]

      [10] Ratnasamy C, Wagner J P. Catal Rev-Sci Eng, 2009, 51: 325

    11. [11]

      [11] Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Perez M. Science, 2007, 318: 1757

    12. [12]

      [12] Fu Q, Li W X, Yao Y X, Liu H Y, Su H Y, Ma D, Gu X K, Chen L M, Wang Z, Zhang H, Wang B, Bao X H. Science, 2010, 328: 1141

    13. [13]

      [13] Liu Z F, Hu J E, Wang Q, Gaskell K, Frenkel A I, Jackson G S, Eichhorn B. J Am Chem Soc, 2009, 131: 6924

    14. [14]

      [14] Grgur B N, Markovic N M, Ross P N. J Phys Chem B, 1998, 102: 2494

    15. [15]

      [15] Mukerjee S, Urian R C, Lee S J, Ticianelli E A, McBreen J. J Electrochem Soc, 2004, 151: A1094

    16. [16]

      [16] Santiago E I, Camara G A, Ticianelli E A. Electrochim Acta, 2003, 48: 3527

    17. [17]

      [17] Dorazio L, Ruettinger W, Castaldi M J, Farrauto R. Top Catal, 2008, 51: 68

    18. [18]

      [18] Ruettinger W, Liu X S, Xu X M, Farrauto R J. Top Catal, 2008, 51: 60

    19. [19]

      [19] Williams W D, Bollmann L, Miller J T, Delgass W N, Ribeiro F H. Appl Catal B, 2012, 125: 206

    20. [20]

      [20] Wang J G, Hammer B. J Catal, 2006, 243: 192

    21. [21]

      [21] Bazin D, Sayers D, Rehr J J, Mottet C. J Phys Chem B, 1997, 101: 5332

    22. [22]

      [22] Ichikuni N, Iwasawa Y. Catal Lett, 1993, 20: 87

    23. [23]

      [23] Behafarid F, Ono L K, Mostafa S, Croy J R, Shafai G, Hong S, Rahman T S, Bare S R, Cuenya B R. Phys Chem Chem Phys, 2012, 14: 11766

    24. [24]

      [24] Choi S H, Lee J S. J Catal, 1997, 167: 364

    25. [25]

      [25] Ma L, Zhao X, Si F Z, Liu C P, Liao J H, Liang L, Xing W. Electrochim Acta, 2010, 55: 9105

    26. [26]

      [26] Park J H, Kim Y T, Park E D, Lee H C, Kim J, Lee D. ChemCatChem, 2013, 5: 806

    27. [27]

      [27] Paal Z, Tetenyi P, Muhler M, Wild U, Manoli J M, Potvin C. J Chem Soc Faraday T, 1998, 94: 459

    28. [28]

      [28] Deng X, Quek S Y, Biener M M, Biener J, Kang D H, Schalek R, Kaxiras E, Friend C M. Surf Sci, 2008, 602: 1166

    29. [29]

      [29] Xu H, Fu Q, Guo X G, Bao X H. ChemCatChem, 2012, 4: 1645

    30. [30]

      [30] Zheng F, Alayoglu S, Guo J H, Pushkarev V, Li Y M, Glans P A, Chen J I, Somorjai G. Nano Lett, 2011, 11: 847

    31. [31]

      [31] Sun D P, Gu X K, Ouyang R H, Su H Y, Fu Q, Bao X H, Li W X. J Phys Chem C, 2012, 116: 7491

    32. [32]

      [32] Sakamoto T, Morishima H, Yoshida A, Naito S. Catal Lett, 2009, 131: 419

    33. [33]

      [33] Dietrich P J, Lobo-Lapidus R J, Wu T P, Sumer A, Akatay M C, Fingland B R, Guo N, Dumesic J A, Marshall C L, Stach E, Jellinek J, Delgass W N, Ribeiro F H, Miller J T. Top Catal, 2012, 55: 53

    34. [34]

      [34] Zafeiratos S, Papakonstantinou G, Jacksic M M, Neophytides S G. J Catal, 2005, 232: 127

    35. [35]

      [35] Rodriguez J A, Liu R, Hrbek J, Perez M, Evans J. J Mol Catal A, 2008, 281: 59

    36. [36]

      [36] Gao D F, Cai F, Xu Q Q, Wang G X, Pan X L, Bao X H. J Energ Chem, 2014, 23: 694

    37. [37]

      [37] Sakamoto T, Kikuchi H, Miyao T, Yoshida A, Naito S. Appl Catal A, 2010, 375: 156

    38. [38]

      [38] Elezovic N R, Babic B M, Radmilovic V R, Gojkovic S L, Krstajic N V, Vracar L M. J Power Sources, 2008, 175: 250

    39. [39]

      [39] Cui Z M, Jiang S P, Li C M. Chem Commun, 2011, 47: 8418

    40. [40]

      [40] Vellacheri R, Unni S M, Nahire S, Kharul U K, Kurungot S. Electrochim Acta, 2010, 55: 2878

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(0)
  • Abstract views(318)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return