Citation: Anita Routaray, Nibedita Nath, Somanath Mantri, Tungabidya Maharana, Alekha Kumar Sutar. Synthesis and structural studies of copper(II) complex supported by -ONNO- tetradentate ligand: Efficient catalyst for the ring-opening polymerization of lactide[J]. Chinese Journal of Catalysis, ;2015, 36(5): 764-770. doi: 10.1016/S1872-2067(14)60293-X shu

Synthesis and structural studies of copper(II) complex supported by -ONNO- tetradentate ligand: Efficient catalyst for the ring-opening polymerization of lactide

  • Corresponding author: Tungabidya Maharana,  Alekha Kumar Sutar, 
  • Received Date: 12 December 2014
    Available Online: 12 January 2015

  • The -ONNO- tetradentate Schiff base ligand N,N'-bis(2-hydroxy-3-methoxybenzaldehyde)benzene-1,2-diamine (HMBBD) has been synthesized. The ligand was attached to copper (Cu-HMBBD) in methanol under N2 atmosphere to give a mononuclear complex. The reactivity of this complex in the ring-opening polymerization (ROP) of lactide has been studied. The complex has a square planner geometry, as determined by X-ray diffraction studies. The copper complex is highly active towards the ring-opening polymerization of lactide, and the rate of polymerization is heavily dependent on the initiator used. The copper complex allows controlled ring-opening polymerization, as shown by the linear relationship between the percentage conversion and the number average molecular weight. Based on the literature, a mechanism for the ROP of lactide has been proposed.
  • 加载中
    1. [1]

      [1] Szwarc M. Nature, 1956, 178: 1168

    2. [2]

      [2] Matyjaszewski K, Davis T P. Handbook of Radical Polymerization. Wiley-Interscience, Hoboken, 2002

    3. [3]

      [3] Grubbs R H. Angew Chem Int Ed, 2006, 45: 3760

    4. [4]

      [4] O'keefe B J, Hillmyer M A, Tolman W B. J Chem Soc, Dalton Trans, 2001: 2215

    5. [5]

      [5] Kubisa P, Penczek S. Prog Polym Sci, 1999, 24: 1409

    6. [6]

      [6] Kharas G B, Sanchez-Riora F, Soverson D K. Polymers of Lactic Acid. In: Mobley D P ed. Plastics from Microbes. Hanser Publishers, München, Germany, 2004

    7. [7]

      [7] Pilone A, Press K, Goldberg I, Kol M, Mazzeo M, Lamberti M. J Am Chem Soc, 2014, 136: 2940

    8. [8]

      [8] Hancock S L, Mahon M F, Jones M D. Dalton Trans, 2013, 42: 9279

    9. [9]

      [9] Dubois Ph, Jacobs C, Jérôme R, Teyssié Ph. Macromolecules, 1991, 24: 2266

    10. [10]

      [10] Sutar A K, Maharana T, Dutta S, Chen C T, Lin C C. Chem Soc Rev, 2010, 39: 1724

    11. [11]

      [11] Sun Y Y, Wang L, Yu D W, Tang N, Wu J C. J Mol Catal A, 2014, 393: 175

    12. [12]

      [12] Liang Z H, Zhang M, Ni X F, Li X, Shen Z Q. Inorg Chem Commun, 2013, 29: 145

    13. [13]

      [13] Gao Y, Dai Z R, Zhang J J, Ma X X, Tang N, Wu J C. Inorg Chem, 2014, 53: 716

    14. [14]

      [14] Wojtaszak J, Mierzwicki K, Szafert S, Gulia N, Ejfler J. Dalton Trans, 2014, 43: 2424

    15. [15]

      [15] Chisholm M H, Eilerts N W, Huffman J C, Iyer S S, Pacold M, Phomphrai K. J Am Chem Soc, 2000, 122: 11845

    16. [16]

      [16] Dove A P, Gibson V C, Marshall E L, Rzepa H S, White A J P, Williams D J. J Am Chem Soc, 2006, 128: 9834

    17. [17]

      [17] Williams C K, Breyfogle L E, Choi S K, Nam W, Young V G Jr, Hillmyer M A, Tolman W B. J Am Chem Soc, 2003, 125: 11350

    18. [18]

      [18] Petrus R, Sobota P. Organometallics, 2012, 31: 4755

    19. [19]

      [19] Biernesser A B, Li B, Byers J A. J Am Chem Soc, 2013, 135: 16553

    20. [20]

      [20] Lee E J, Lee K M, Jang J, Kim E, Chung J S, Do Y, Yoon S C, Park S Y. J Mol Catal A, 2014, 385: 68

    21. [21]

      [21] Sattayanon C, Sontising W, Jitonnom J, Meepowpan P, Punyodom W, Kungwan N. Comp Theor Chem, 2014, 1044: 29

    22. [22]

      [22] Chen H Y, Liu M Y, Sutar A K, Lin C C. Inorg Chem, 2010, 49: 665

    23. [23]

      [23] Tsai C Y, Du H C, Chang J C, Huang B H, Ko B T, Lin C C. RSC Adv, 2014, 4: 14527

    24. [24]

      [24] Chen H Y, Peng Y L, Huang T H, Sutar A K, Miller S A, Lin C C. J Mol Catal A, 2011, 339: 61

    25. [25]

      [25] Mou Z H, Liu B, Wang M Y, Xie H Y, Li P, Li L, Li S H, Cui D M. Chem Commun, 2014, 50: 11411

    26. [26]

      [26] Abbina S, Du G D. ACS Macro Lett, 2014, 3: 689

    27. [27]

      [27] Fliedel C, Vila-Viçosa D, Calhorda M J, Dagorne S, Aviles T. ChemCatChem, 2014, 6: 1357

    28. [28]

      [28] Hill M S, Hitchcock P B, Pongtavornpinyo R. Inorg Chem, 2007, 46: 3783

    29. [29]

      [29] Appavoo D, Omondi B, Guzei I A, Van Wyk J L, Zinyemba O, Darkwa J. Polyhedron, 2014, 69: 55

    30. [30]

      [30] John A, Katiyar V, Pang K, Shaikh M M, Nanavati H, Ghosh P. Polyhedron, 2007, 26: 4033

    31. [31]

      [31] Routaray A, Nath N, Maharana T, Sutar A K. J Macromol Sci, Part A Pure Appl Chem, 2015, accepted

    32. [32]

      [32] Bhunora S, Mugo J, Bhaw-Luximon A, Mapolie S, Van Wyk J, Darkwa J, Nordlander E. Appl Organomet Chem, 2011, 25: 133

    33. [33]

      [33] Chen L L, Ding L Q, Zeng C, Long Y, Lü X Q, Song J R, Fan D D, Jin W J. Appl Organomet Chem, 2011, 25: 310

    34. [34]

      [34] Whitehorne T J J, Schaper F. Inorg Chem, 2013, 52: 13612

    35. [35]

      [35] Gupta K C, Sutar A K. Coord Chem Rev, 2008, 252: 1420

    36. [36]

      [36] Gupta K C, Sutar A K, Lin C C. Coord Chem Rev, 2009, 253: 1926

    37. [37]

      [37] Grivani G, Akherati A. Inorg Chem Commun, 2013, 28: 90

    38. [38]

      [38] Sutar A K, Das Y, Pattnaik S, Routaray A, Nath N, Rath P, Maharana T. Chin J Catal (催化学报), 2014, 35: 1701

    39. [39]

      [39] Fraile J M, Mayoral J A, Royo A J, Salvador R V, Altava B, Luis S V, Burguete M I. Tetrahedron, 1996, 52: 9853

    40. [40]

      [40] Alamri H, Zhao J P, Pahovnik D, Hadjichristdis N. Polym Chem, 2014, 5: 5471

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    2. [2]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    5. [5]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    6. [6]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    7. [7]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    8. [8]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    9. [9]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    10. [10]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    11. [11]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    12. [12]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    13. [13]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    14. [14]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    15. [15]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    16. [16]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    17. [17]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    18. [18]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    19. [19]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    20. [20]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

Metrics
  • PDF Downloads(0)
  • Abstract views(348)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return