Citation: Pingjing Chang, Haiyang Cheng, Weiwei Lin, Xiaoru Li, Fengyu Zhao. A stable and active AgxS crystal preparation and its performance as photocatalyst[J]. Chinese Journal of Catalysis, ;2015, 36(4): 564-571. doi: 10.1016/S1872-2067(14)60288-6 shu

A stable and active AgxS crystal preparation and its performance as photocatalyst

  • Corresponding author: Fengyu Zhao, 
  • Received Date: 23 November 2014
    Available Online: 8 January 2015

    Fund Project: 国家自然科学基金(21273222). (21273222)

  • AgxS crystals were synthesized via hydrothermal (AgxS-H) and in situ ion-exchange (AgxS-IE) methods. The samples were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet-visible-near infrared absorption spectroscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy and surface photovoltage measurements. The photocatalytic performance was investigated for the decomposition of methyl blue (MB) under visible light irradiation (λ ≥ 420 nm). The AgxS-H had smaller particles, wider band gap and weaker recombination of photoinduced charges than AgxS-IE, resulting in a higher photocatalytic activity. Moreover, AgxS-H was stable, and could be reused five times without loss of photocatalytic activity. Additionally, a possible pathway for the photocatalytic degradation of MB over AgxS has been proposed, that MB was oxidized mainly by hydroxyl radicals and partly via electron holes generated in the AgxS. AgxS-H is an efficient photocatalyst and has great potential for the degradation of harmful organic dyes in wastewater.
  • 加载中
    1. [1]

      [1] Hou Y, Li X Y, Zhao Q D, Chen G H, Raston C L. Environ Sci Technol, 2012, 46: 4042

    2. [2]

      [2] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452: 301

    3. [3]

      [3] Meshko V, Markovska L, Mincheva M, Rodrigues A E. Water Res, 2001, 35: 3357

    4. [4]

      [4] Cooper P. J Soc Dyers Colour, 1993, 109: 97

    5. [5]

      [5] Patil S S, Shinde V M. Environ Sci Technol, 1988, 22: 1160

    6. [6]

      [6] Moore A T, Vira A, Fogel S. Environ Sci Technol, 1989, 23:403

    7. [7]

      [7] Correia V M, Stephenson T, Judd S J. Environ Technol, 1994, 15: 917

    8. [8]

      [8] Arslan I, Balcioglu I A. Dyes Pigments, 1999, 43: 95

    9. [9]

      [9] Wu F, Deng N S, Zuo Y G. Chemosphere, 1999, 39: 2079

    10. [10]

      [10] Kang S F, Liao C H, Po S T. Chemosphere, 2000, 41: 1287

    11. [11]

      [11] Balanosky E, Fernandez J, Kiwi J, Lopez A. Water Sci Technol, 1999, 40: 417

    12. [12]

      [12] Arslan I, Balcioglu I A, Tuhkanen T. Environ Technol, 1999, 20: 921

    13. [13]

      [13] Ince N H, Gonenc D T. Environ Technol, 1997, 18: 179

    14. [14]

      [14] Kuo W S, Ho P H. Chemosphere, 2001, 45: 77

    15. [15]

      [15] Zhang F L, Zhao J C, Shen T, Hidaka H, Pelizzetti E, Serpone N. Appl Catal B, 1998, 15: 147

    16. [16]

      [16] Qu P, Zhao J C, Shen T, Hidaka H. J Mol Catal A, 1998, 129: 257

    17. [17]

      [17] Galindo C, Jacques P, Kalt A. Chemosphere, 2001, 45: 997

    18. [18]

      [18] Tang W Z, An H. Chemosphere, 1995, 31: 4157

    19. [19]

      [19] Konstantinou I K, Albanis T A. Appl Catal B, 2004, 49: 1

    20. [20]

      [20] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331

    21. [21]

      [21] Chong M N, Jin B, Chow C W K, Saint C. Water Res, 2010, 44: 2997

    22. [22]

      [22] Wu P G, Xie R C, Imlay J A, Shang J K. Appl Catal B, 2009, 88: 576

    23. [23]

      [23] Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D. Appl Catal B, 2014, 144:369

    24. [24]

      [24] Chen X, Mao S S. Chem Rev, 2007, 107: 2891

    25. [25]

      [25] Fujishima A, Rao T N, Tryk D A. J Photochem Photobiol C, 2000, 1: 1

    26. [26]

      [26] Tong T Z, Zhang J L, Tian B Z, Chen F, He D N. J Hazard Mater, 2008, 155: 572

    27. [27]

      [27] Tian B Z, Li C Z, Gu F, Jiang H B, Hu Y J, Zhang J L. Chem Eng J, 2009, 151: 220

    28. [28]

      [28] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    29. [29]

      [29] Niu Y X, Xing M Y, Tian B Z, Zhang J L. Appl Catal B, 2012, 115: 253

    30. [30]

      [30] Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J Am Chem Soc, 2004, 126: 4782

    31. [31]

      [31] Bae E Y, Choi W Y, Park J W, Shin H S, Kim S B, Lee J S. J Phy Chem B, 2004, 108: 14093

    32. [32]

      [32] Zou W W, Zhang J L, Chen F. Mater Lett, 2010, 64: 1710

    33. [33]

      [33] Xie Y, Heo S H, Kim Y N, Yoo S H, Cho S O. Nanotechnology, 2010, 21: 015703

    34. [34]

      [34] Neves M C, Nogueira J M F, Trindade T, Mendonca M H, Pereira M I, Monteiro O C. J Photochem Photobiol A, 2009, 204: 168

    35. [35]

      [35] Hwang I, Seol M, Kim H, Yong K. Appl Phys Lett, 2013, 103: 023902

    36. [36]

      [36] Yang W L, Zhang L, Hu Y, Zhong Y J, Wu H B, Lou X W. Angew Chem Int Ed, 2012, 51: 11501

    37. [37]

      [37] Xing C S, Zhang Y, Wu Z D, Jiang D L, Chen M. Dalton Trans, 2014, 43: 2772

    38. [38]

      [38] Smart R S C, Skinner W M, Gerson A R. Surf Interface Anal, 1999, 28:101

    39. [39]

      [39] Chen Z, Liu S Q, Yang M Q, Xu Y J. ACS Appl Mater Interfaces, 2013, 5: 4309

    40. [40]

      [40] Bao N Z, Shen L M, Takata T, Domen K. Chem Mater, 2008, 20: 110

    41. [41]

      [41] Butler M A, Ginley D S. J Electrochem Soc, 1978, 125: 228

    42. [42]

      [42] Netherco A H. Phys Rev Lett, 1974, 33: 1088

    43. [43]

      [43] Huxter V M, Mirkovic T, Nair P S, Scholes G D. Adv Mater, 2008, 20: 2439

    44. [44]

      [44] Zhang Y J,Liu Y S, Li C Y, Chen X Y, Wang Q B. J Phys Chem C, 2014, 118: 4918

    45. [45]

      [45] Zhang J K, Liu C L, Zhang X, Ke F, Han Y H, Peng G, Ma Y Z, Gao C X. Appl Phys Lett, 2013, 103: 082116

    46. [46]

      [46] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J Am Chem Soc, 2010, 132: 11856

    47. [47]

      [47] Wang H K, Dou K P, Teoh W Y, Zhan Y W, Hung T F, Zhang F H, Xu J Q, Zhang R Q, Rogach A L. Adv Funct Mater, 2013, 23: 4847

    48. [48]

      [48] Hagfeldt A, Gratzel M. Chem Rev, 1995, 95: 49

    49. [49]

      [49] Zhang X, Zhang L Z, Xie T F, Wang D J. J Phys Chem C, 2009, 113: 7371

    50. [50]

      [50] Gross D, Mora-Seró I, Dittrich T, Belaidi A, Mauser C, Houtepen A J, Da Como E, Rogach A L, Feldmann J. J Am Chem Soc, 2010, 132: 5981

    51. [51]

      [51] Fan H M, Jiang T F, Li H Y, Wang D J, Wang L L, Zhai J L, He D Q, Wang P, Xie T F. J Phys Chem C, 2012, 116: 2425

    52. [52]

      [52] Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K. Inorg Chem, 2014, 53: 8902

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(280)
  • Abstract views(483)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return