Citation: Nasir Iravani, Mosadegh Keshavarz, Hossein Ali Shojaeian Kish, Rasool Parandvar. Tin sulfide nanoparticles supported on activated carbon as an efficient and reusable Lewis acid catalyst for three-component one-pot synthesis of 4H-pyrano[2, 3-c]pyrazole derivatives[J]. Chinese Journal of Catalysis, ;2015, 36(4): 626-633. doi: 10.1016/S1872-2067(14)60284-9 shu

Tin sulfide nanoparticles supported on activated carbon as an efficient and reusable Lewis acid catalyst for three-component one-pot synthesis of 4H-pyrano[2, 3-c]pyrazole derivatives

  • Corresponding author: Nasir Iravani,  Mosadegh Keshavarz, 
  • Received Date: 13 November 2014
    Available Online: 15 December 2014

  • Tin sulfide nanoparticles (SnS-NPs) were prepared in aqueous solution at room temperature on the surface of activated carbon (AC) and were investigated using field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction, reflective ultraviolet-visible spectrophotometry, and spectrofluorimetry. Calculations based on the SEM and TEM images showed that the sizes of the SnS-NPs immobilized on the AC were 30-70 nm. The prepared nanocomposite was used as a heterogeneous Lewis acid catalyst for the three-components one-pot synthesis of 4H-pyrano[2,3-c]pyrazole derivatives in ethanol at 80 ℃. The reactions were efficiently performed in the presence of the prepared catalyst in short reaction times, and gave the desired products in high yields. This catalyst can be easily recovered by simple filtration and recycled up to eight consecutive times without significant loss of its efficiency.
  • 加载中
    1. [1]

      [1] Buzea C, Pacheco I I, Robbie K. Biointerphases, 2007, 2(4): MR17

    2. [2]

      [2] Astruc D. Nanoparticles and Catalysis. Weinheim: Wiley-VCH, 2008

    3. [3]

      [3] Tian N, Zhou Z Y, Yu N F, Wang L Y, Sun S G. J Am Chem Soc, 2010, 132: 7580

    4. [4]

      [4] Zhang C, Kang Z H, Shen E H, Wang E B, Gao L, Luo F, Tian C G, Wang C L, Lan Y, Li J X, Cao X J. J Phys Chem B, 2006, 110: 184

    5. [5]

      [5] Li Z H, Zeng J H, Li Y D. Small, 2007, 3: 438

    6. [6]

      [6] Chen L J, Li L P, Li G S. J Alloys Compd, 2008, 464: 532

    7. [7]

      [7] Cheng F Y, Shen J, Peng B, Pan Y D, Tao Z L, Chen J. Nat Chem, 2011, 3: 79

    8. [8]

      [8] Xia Y N, Xiong Y J, Lim B, Skrabalak S E. Angew Chem Int Ed, 2009, 48: 60

    9. [9]

      [9] Xiong Y J, Xia Y N. Adv Mater, 2007, 19: 3385

    10. [10]

      [10] Kaneko K, Inoke K, Freitag B, Hungria A B, Midgley P A, Hansen T W, Zhang J, Ohara S, Adschiri T. Nano Lett, 2007, 7: 421

    11. [11]

      [11] Wu Y, Wadia C, Ma W L, Sadtler B, Alivisatos A P. Nano Lett, 2008, 8: 2551

    12. [12]

      [12] Choi S H, Kim E G, Hyeon T. J Am Chem Soc, 2006, 128: 2520

    13. [13]

      [13] Camacho-Bragado G A, Elechiguerra J L, Yacaman M J. Mater Character, 2008, 59: 204

    14. [14]

      [14] Pua F L, Chia C H, Zakaria S, Neoh S K, Liew T K. Sains Malaysiana, 2011, 40: 221

    15. [15]

      [15] Zou J, Zhang J X, Zhang B H, Zhao P T, Huang K X. Mater Lett, 2007, 61: 5029

    16. [16]

      [16] Ma L, Chen W X, Li H, Zheng Y F, Xu Z D. Mater Lett, 2008, 62: 797

    17. [17]

      [17] Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q, Xie Y. Angew Chem Int Ed, 2012, 51: 8727

    18. [18]

      [18] Dai P C, Zhang G, Chen Y C, Jiang H C, Feng Z Y, Lin Z J, Zhan J H. Chem Commun, 2012, 48: 3006

    19. [19]

      [19] Ramasamy K, Malik M A, O'Brien P. Chem Commun, 2012, 48: 5703

    20. [20]

      [20] Xin X K, He M, Han W, Jung J, Lin Z Q. Angew Chem Int Ed, 2011, 50: 11739

    21. [21]

      [21] Kuo S C, Huang L J, Nakamura H. J Med Chem, 1984, 27: 539

    22. [22]

      [22] Wang J L, Liu D X, Zhang Z J, Shan S M, Han X B, Srinivasula S M, Croce C M, Alnemri E S, Huang Z W. Proc Natl Acad Sci USA, 2000, 97: 7124

    23. [23]

      [23] Zaki M E A, Soliman H A, Hiekal O A, Rashad A E Z. Zeit Naturforsch C, 2006, 61: 1

    24. [24]

      [24] Zhu J P, Bienayme H (Eds). Multicomponent Reactions. Weinheim: Wiley-VCH, 2005

    25. [25]

      [25] Balaskar R S, Gavade S N, Mane M S, Shingate B B, Shingare M S, Mane D V. Chin Chem Lett, 2010, 21: 1175

    26. [26]

      [26] Mecadon H, Rohman M R, Kharbangar I, Laloo B M, Kharkongor I, Rajbangshi M, Myrboh B. Tetrahedron Lett, 2011, 52: 3228

    27. [27]

      [27] Heravi M M, Ghods A, Derikvand F, Bakhtiari K, Bamoharram F F. J Iran Chem Soc, 2010, 7: 615

    28. [28]

      [28] Vasuki G, Kumaravel K. Tetrahedron Lett, 2008, 49: 5636

    29. [29]

      [29] Gogoi S, Zhao C G. Tetrahedron Lett, 2009, 50: 2252

    30. [30]

      [30] Sheibani H, Babaie M. Synth Commun, 2010, 40: 257

    31. [31]

      [31] Ziarani G M, Abbasi A, Badiei A, Aslani Z. E J Chem, 2011, 8: 293

    32. [32]

      [32] Gao S, Tsai C H, Tseng C, Yao C F. Tetrahedron, 2008, 64: 9143

    33. [33]

      [33] Fotouhi L, Heravi M M, Fatehi A, Bakhtiari K. Tetrahedron Lett, 2007, 48: 5379

    34. [34]

      [34] Azarifar D, Khatami S M, Nejat-Yami R. J Chem Sci, 2014, 126: 95

    35. [35]

      [35] Azarifar A, Nejat-Yami R, Al-Kobaisi M, Azarifar D. J Iran Chem Soc, 2013, 10: 439

    36. [36]

      [36] Khaksar S, Rouhollahpour A, Talesh S M. J Fluorine Chem, 2012, 141:11

    37. [37]

      [37] Heravi M M, Javanmardi N, Oskooei H A, Baghernejad B. GU J Sci, 2011, 24: 227

    38. [38]

      [38] Shi D Q, Mou J, Zuang Q Y, Niu L H, Wu N, Wang X S. Synth Commun, 2004, 34: 4557

    39. [39]

      [39] Jin T S, Zhao R Q, Li T S. Arkivoc, 2006, (xi): 176

    40. [40]

      [40] Niknam K, Borazjani N, Rashidian R, Jamali A. Chin J Catal (催化学报), 2013, 34: 2245

    41. [41]

      [41] Hasaninejad A, Golzar N, Beyrati M, Zare A, Doroodmand M M. J Mol Catal A, 2013, 372: 137

    42. [42]

      [42] Hasaninejad A, Shekouhy M, Golzar N, Zare A, Doroodmand M M. Appl Catal A, 2011, 402: 11

    43. [43]

      [43] Albadi J, Keshavarz M, Shirini F, Vafaee-nezhad M. Catal Commun, 2012, 27: 17

    44. [44]

      [44] Albadi J, Keshavarz M, Abedini M, Khoshakhlagh M. J Chem Sci, 2013, 125: 295

    45. [45]

      [45] Albadi J, Keshavarz M, Abedini M, Vafaee-nezhad M. Chin Chem Lett, 2012, 23: 797

    46. [46]

      [46] Keshavarz M, Iravani N, Ghaedi A, Ahmady A Z, Vafaei-Nezhad M, Karimi S. SpringerPlus, 2013, 2: 64

    47. [47]

      [47] Yavari I, Hajinasiri R, Sayyed-Alangi S Z, Iravani N. Monatsh Chem, 2008, 139: 1029

    48. [48]

      [48] Yavari I, Sanaeishoar T, Ghazvini M, Iravani N. J Sulfur Chem, 2010, 31: 169

    49. [49]

      [49] Iravani N, Safikhani Mohammadzade N, Niknam K. Chin Chem Lett, 2011, 22: 1151

    50. [50]

      [50] Iravani N, Karami B, Asadimoghaddam F, Monfared M, Karami N. J Sulfur Chem, 2012, 33: 279

    51. [51]

      [51] Iravani N, Albadi J, Varnaseri S, Jaberi Z, Karami N, Khadamati M. J Chin Chem Soc, 2012, 59: 1567

    52. [52]

      [52] Iravani N, Keshavarz M, Monfared M, Hosseini F. J Chin Chem Soc, 2014, 61: 357

    53. [53]

      [53] Nazari S, Keshavarz M, Karami B, Iravani N, Vafaee-Nezhad M. Chin Chem Lett, 2014, 25: 317

    54. [54]

      [54] Koktysh D S, McBride J R, Rosenthal S J. Nanoscale Res Lett, 2007, 2: 144

    55. [55]

      [55] Avellaneda D, Delgado G, Nair M T S, Nair P K. Thin Solid Films, 2007, 515: 5771

    56. [56]

      [56] Goudarzi A, Motedayen Aval G, Sahraei R, Ahmadpoor H. Thin Solid Films, 2008, 516: 4953

  • 加载中
    1. [1]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    2. [2]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    3. [3]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    4. [4]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    5. [5]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    6. [6]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    7. [7]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    8. [8]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    9. [9]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    10. [10]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    11. [11]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    12. [12]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    13. [13]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    16. [16]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    17. [17]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    18. [18]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    19. [19]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    20. [20]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

Metrics
  • PDF Downloads(0)
  • Abstract views(306)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return