Citation: Vasko Idakiev, Dimitar Dimitrov, Tatyana Tabakova, Krasimir Ivanov, Zhong-Yong Yuan, Bao-Lian Su. Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia[J]. Chinese Journal of Catalysis, ;2015, 36(4): 579-587. doi: 10.1016/S1872-2067(14)60283-7 shu

Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia

  • Corresponding author: Vasko Idakiev, 
  • Received Date: 17 November 2014
    Available Online: 5 January 2015

  • Mesoporous oxides TiO2 and ZrO2, synthesized by surfactant templating via a neutral C13(EO)6-Zr(OC3H7)4 assembly pathway, and ceria-modified TiO2 and ZrO2, prepared by a deposition-precipitation (DP) method, featuring high surface areas and uniform pore size distributions were used as supports for gold catalysts. The supported gold catalysts were assessed for the catalytic abatement of air pollutants, i.e., CO, CH3OH, and (CH3)2O. The gold was supported on the mesoporous oxides by a DP method. The supports and catalysts were characterized by powder X-ray diffraction, high-resolution transmission electron microscopy, N2 adsorption-desorption analysis, and temperature-programmed reduction technique. A high degree of synergistic interaction between ceria and mesoporous ZrO2 and TiO2 as well as a positive modification of the structural and catalytic properties by ceria was observed. The ceria additive interacts with the mesoporous oxides and induces a strong effect on the reducibility of the supports. The catalytic behavior of the catalysts was discussed to determine the role of the ceria modifying additive and possible interaction between the gold nanoparticles and ceria-mesoporous oxide supports. The gold catalysts supported on ceria-modified mesoporous ZrO2 displayed superior catalytic activity (~100% conversion of CO at 10 ℃ and CH3OH at 60 ℃). The high catalytic activity can be attributed to the ability of the support to assist oxygen vacancies formation. The studies indicate that the ceria-modified mesoporous oxide supports have potential as supports for gold-based catalysts.
  • 加载中
    1. [1]

      [1] Vieira Soares A P, Farinha Portela M, Kiennemann A. Catal Commun, 2001, 2: 159

    2. [2]

      [2] Tatibouët J M. Appl Catal A, 1997, 148: 213

    3. [3]

      [3] Armor N. Res Chem Intermed, 1998, 24: 105

    4. [4]

      [4] Guczi L, Borko L, Schay Z. Stud Surf Sci Catal, 1998, 113: 69

    5. [5]

      [5] Imamura S. Ind Eng Chem Res, 1999, 38: 1743

    6. [6]

      [6] Zwinkels M F M, Jaras S G, Menon P G, Griffin T A. Catal Rev-Sci Eng, 1993, 35: 319

    7. [7]

      [7] Liotta L F. Appl Catal B, 2010, 100: 403

    8. [8]

      [8] Santos V P, Carabineiro S A C, Tavares P B, Pereira M F R, Órfão J J M, Figueiredo J L. Appl Catal B, 2010, 99: 198

    9. [9]

      [9] Tang X L, Zhang B C, Li Y, Xu Y D, Xin Q, Shen W J. Catal Today, 2004, 93-95: 191

    10. [10]

      [10] Mechandjiev D R, Dimitrova P G, Tzolovski I A, Raevski A B. WO Patent 2003061821. 2003

    11. [11]

      [11] Scirè S, Liotta L F. Appl Catal B, 2012, 125: 222

    12. [12]

      [12] Barakat T, Rooke J C, Genty E, Cousin R, Siffert S, Su B L. Energy Environ Sci, 2013, 6: 371

    13. [13]

      [13] Haruta M, Ueda A, Tsubota S, Torres Sanchez R M. Catal Today, 1996, 29: 443

    14. [14]

      [14] Petrov L A. Stud Surf Sci Catal, 2000, 130: 2345

    15. [15]

      [15] Wang C T, Ro S H. Mater Chem Phys, 2007, 101: 41

    16. [16]

      [16] Bonelli R, Albonetti S, Morandi V, Ortolani L, Riccobene P M, Scirè S, Zacchini S. Appl Catal A, 2011, 395: 10

    17. [17]

      [17] Li W B, Wang J X, Gong H. Catal Today, 2009, 148: 81

    18. [18]

      [18] Delimaris D, Ioannides T. Appl Catal B, 2009, 89: 295

    19. [19]

      [19] Liotta L F, Ousmane M, Di Carlo G, Pantaleo G, Deganello G, Boreave A, Giroir-Fendler A. Catal Lett, 2009, 127: 270

    20. [20]

      [20] Delimaris D, Ioannides T. Appl Catal B, 2008, 84: 303

    21. [21]

      [21] Gutierrez-Ortiz J I, De Rivas B, Lopez-Fonseca R, Gonzalez-Velasco J R. Appl Catal B, 2006, 65: 191

    22. [22]

      [22] Tabakova T, Dimitrov D, Manzoli M, Vindigni F, Petrova P, Ilieva L, Zanella R, Ivanov K. Catal Commun, 2013, 35: 51

    23. [23]

      [23] Idakiev V, Ilieva L, Andreeva D, Blin J L, Gigot L, Su B L. Appl Catal A, 2003, 243: 25

    24. [24]

      [24] Ousmane M, Liotta L F, Pantaleo G, Venezia A M, Di Carlo G, Aouine M, Retailleau L, Giroir-Fendler A. Catal Today, 2011, 176: 7

    25. [25]

      [25] Zhang Y B, Shen Y N, Yang X Z, Sheng S S, Wang T, Adebajo M F, Zhu H Y. J Mol Catal A, 2010, 316: 100

    26. [26]

      [26] Ying F, Wang S J, Au C T, Lai S Y. Microporous Mesoporous Mater, 2011, 142: 308

    27. [27]

      [27] Gennequin C, Lamallem M, Cousin R, Siffert S, Aissi F, Aboukais A. Catal Today, 2007, 122: 301

    28. [28]

      [28] Gennequin C, Lamallem M, Cousin R, Siffert S, Idakiev V, Tabakova T, Aboukaıs A, Su B L. J Mater Sci, 2009, 44: 6654

    29. [29]

      [29] Idakiev V, Tabakova T, Tenchev K, Yuan Z Y, Ren T Z, Su B L. Catal Today, 2007, 128: 223

    30. [30]

      [30] Idakiev V, Tabakova T, Naydenov A, Yuan Z Y, Su B L. Appl Catal B, 2006, 63: 178

    31. [31]

      [31] Barret E P, Joyner L G, Halenda P P. J Am Chem Soc, 1951, 73: 373

    32. [32]

      [32] Brunauer S, Emmett P H, Teller E. J Am Chem Soc, 1938, 60: 309

    33. [33]

      [33] Idakiev V, Tabakova T, Tenchev K, Yuan Z Y, Ren T Z, Su B L. J Porous Mater, 2012, 19: 15

    34. [34]

      [34] Del Monte F, Larsen W, Mackenzie J D. J Am Ceram Soc, 2000, 83: 1506

    35. [35]

      [35] Brunauer S, Deming L S, Deming W E, Teller E. J Am Chem Soc, 1940, 62: 1723

    36. [36]

      [36] Blin J L, Flamant R, Su B L. Int J Inorg Mater, 2001, 3: 959

    37. [37]

      [37] Blin J L, Léonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Angew Chem Int Ed, 2003, 42: 2872

    38. [38]

      [38] Idakiev V, Tabakova T, Yuan Z Y, Su B L. Appl Catal A, 2004, 270: 135

    39. [39]

      [39] Yao H C, Yu Yao Y F. J Catal, 1984, 86: 254

    40. [40]

      [40] Andreeva D, Idakiev V, Tabakova T, Ilieva L, Falaras P, Bourlinos A, Travlos A. Catal Today, 2002, 72: 51

  • 加载中
    1. [1]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    2. [2]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    3. [3]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    4. [4]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    5. [5]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    6. [6]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    7. [7]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    8. [8]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    9. [9]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    10. [10]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    11. [11]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    12. [12]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    13. [13]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    14. [14]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    15. [15]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    16. [16]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    17. [17]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    18. [18]

      Huijuan LiZhu WangJiagen GengRuiping SongXiaoyin LiuChaochen FuSi Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138

    19. [19]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    20. [20]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

Metrics
  • PDF Downloads(250)
  • Abstract views(486)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return