Citation: Kin Hong Liew, Wan Zurina Samad, Norazzizi Nordin, Poh Lee Loh, Joon Ching Juan, Mohd Ambar Yarmo, Badrul Hisham Yahaya, Rahimi M. Yusop. Preparation and characterization of HypoGel-supported Pd nanocatalysts for Suzuki reaction under mild conditions[J]. Chinese Journal of Catalysis, ;2015, 36(5): 771-777. doi: 10.1016/S1872-2067(14)60282-5 shu

Preparation and characterization of HypoGel-supported Pd nanocatalysts for Suzuki reaction under mild conditions

  • Corresponding author: Rahimi M. Yusop, 
  • Received Date: 19 December 2014
    Available Online: 7 January 2015

    Fund Project: This work was supported by the Ministry of Higher Education Malaysia (FRGS/1/2012/ST01/UKM/02/1) (FRGS/1/2012/ST01/UKM/02/1)Research Grant from UKM (IP-2014-070 and LAUREATE-2013-002). (IP-2014-070 and LAUREATE-2013-002)

  • A new heterogeneous catalyst composed of Pd nanoparticles immobilized within a HypoGel resin has been prepared in the absence of any ligands using an extensive cross-linking method. This newly developed nanocatalyst was characterized by N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy and inductively coupled plasma-mass spectrometer (ICP-MS) techniques. TEM and XRD results revealed that the Pd nanoparticles were well dispersed with diameters in the range of 4-12 nm, and an average size of about 8 nm. The cross-linked Pd catalyst demonstrated excellent catalytic activity towards the synthesis of a series of biaryl compounds by the reaction of various aryl halides (e.g., bromides andiodides) with phenylboronic acid in the presence of tetrabutylammonium bromide. ICP-MS analysis indicated that there was only 0.25% weight loss of Pd (0.55 ± 0.02 ppm) from the supported catalyst after the first cycle reaction. Furthermore, the catalyst showed excellent reusability (up to five uses) with consistently high levels of catalytic activity following its recovery by filtration.
  • 加载中
    1. [1]

      [1] Miyaura N, Suzuki A. Chem Rev, 1995, 95: 2457

    2. [2]

      [2] Suzuki A. J Organomet Chem, 1999, 576: 147

    3. [3]

      [3] Xue L Q, Lin Z Y. Chem Soc Rev, 2010, 39: 1692

    4. [4]

      [4] Newman S G, Lautens M. J Am Chem Soc, 2011, 133: 1778

    5. [5]

      [5] Miyaura N, Yanagi T, Suzuki A. Synth Commun, 1981, 11: 513

    6. [6]

      [6] Karami K, Ghasemi M, Naeini N H. Catal Commun, 2013, 38: 10

    7. [7]

      [7] Van der Boom M E, Milstein D. Chem Rev, 2003, 103: 1759

    8. [8]

      [8] Cole-Hamilton D J. Science, 2003, 299: 1702

    9. [9]

      [9] Dell'Anna M M, Mali M, Mastrorilli P, Rizzuti A, Ponzoni C, Leonelli C. J Mol Catal A, 2013, 366: 186

    10. [10]

      [10] Li H Q, Han L N, Cooper-White J, Kim I. Green Chem, 2012, 14: 586

    11. [11]

      [11] Senapati K K, Roy S, Borgohain C, Phukan P. J Mol Catal A, 2012, 352: 128

    12. [12]

      [12] Zhu W C, Yang Y, Hu S, Xiang G L, Xu B, Zhuang J, Wang X. Inorg Chem, 2012, 51: 6020

    13. [13]

      [13] Moussa S, Siamaki A R, Gupton B F, El-Shall M S. ACS Catal, 2012, 2: 145

    14. [14]

      [14] Coccia F, Tonucci L, d'Alessandro N, D'Ambrosio P, Bressan M. Inorg Chim Acta, 2013, 399: 12

    15. [15]

      [15] Park S, Seo J G, Jung J C, Baeck S H, Kim T J, Chung Y M, Oh S H, Song I K. Catal Commun, 2009, 10: 1762

    16. [16]

      [16] Akai Y, Yamamoto T, Nagata Y, Ohmura T, Suginome M. J Am Chem Soc, 2012, 134: 11092

    17. [17]

      [17] Liew K H, Loh P L, Juan J C, Yarmo M A, Yusop R M. Sci World J, 2014: 796196

    18. [18]

      [18] Uozumi Y, Nakai Y. Org Lett, 2002, 4: 2997

    19. [19]

      [19] Smith C D, Baxendale I R, Lanners S, Hayward J J, Smith S C, Ley S V. Org Biomol Chem, 2007, 5: 1559

    20. [20]

      [20] Bester K, Bukowska A, Bukowski W. Appl Catal A, 2012, 443-444: 181

    21. [21]

      [21] Zhao F Y, Shirai M, Arai M. J Mol Catal A, 2000, 154: 39

    22. [22]

      [22] Sin E, Yi S S, Lee Y S. J Mol Catal A, 2010, 315: 99

    23. [23]

      [23] Liu S Y, Zhou Q Z, Jin Z N, Jiang H J, Jiang X Z. Chin J Catal (刘诗咏, 周其忠, 金正能, 蒋华江, 姜玄珍. 催化学报), 2010, 31: 557

    24. [24]

      [24] Phan N T S, Jones C W. J Mol Catal A, 2006, 253: 123

    25. [25]

      [25] Ma H C, Bao Z K, Han G B, Yang N N, Xu Y F, Yang Z M, Cao W, Ma Y. Chin J Catal (马恒昌, 包志康, 韩国斌, 杨宁宁, 许玉菲, 杨增明, 曹伟, 马源. 催化学报), 2013, 34: 578

    26. [26]

      [26] Ito T, Suda K, Kumamoto T, Nakanishi W, Watanabe T, Ishikawa T, Seki H, Kawahata M, Yamaguchi K, Ogura Y, Suzuki K T. Mol Divers, 2010, 14: 131

    27. [27]

      [27] Suzuki N, Kishimoto K, Yamazaki K, Kumamoto T, Ishikawa T, Margetić D. Synlett, 2013, 24: 2510

    28. [28]

      [28] Bagheri M, Beyermann M, Dathe M. Antimicrob Agents Chemother, 2009, 53: 1132

    29. [29]

      [29] Costa F, Carvalho I F, Montelaro R C, Gomes P, Martins M C. Acta Biomater, 2011, 7: 1431

    30. [30]

      [30] Yusop R M, Unciti-Broceta A, Johansson E M V, Sánchez-Martín R M, Bradley M. Nat Chem, 2011, 3: 239

    31. [31]

      [31] Cho J K, Najman R, Dean T W, Ichihara O, Muller C, Bradley M. J Am Chem Soc, 2006, 128: 6276

    32. [32]

      [32] Unciti-Broceta A, Johansson E M V, Yusop R M, Sánchez-Martín R M, Bradley M. Nat Protoc, 2012, 7: 1207

    33. [33]

      [33] Najman R, Cho J K, Coffey A F, Davies J W, Bradley M. Chem Commun, 2007: 5031

    34. [34]

      [34] Shen C M, Su Y K, Yang H T, Yang T Z, Gao H J. Chem Phys Lett, 2003, 373: 39

    35. [35]

      [35] Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd Ed. London: Wiley, 2004

    36. [36]

      [36] Wu X F, Anbarasan P, Neumann H, Beller M. Angew Chem Int Ed, 2010, 49: 9047

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    4. [4]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    8. [8]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    9. [9]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    12. [12]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    13. [13]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    14. [14]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    15. [15]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    16. [16]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    17. [17]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    18. [18]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    19. [19]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    20. [20]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return