Citation:
Lei Zhu, Shu Ye, Asghar Ali, Kefayat Ulla, Kwang Youn Cho, Won-Chun Oh. Modified hydrothermal synthesis and characterization of reduced graphene oxide-silver selenide nanocomposites with enhanced reactive oxygen species generation[J]. Chinese Journal of Catalysis,
;2015, 36(4): 603-611.
doi:
10.1016/S1872-2067(14)60275-8
-
A visible-light photocatalyst containing Ag2Se and reduced graphene oxide (RGO) was synthesized by a facile sonochemical-assisted hydrothermal method. X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray analysis, and ultraviolet-visible diffuse reflectance spectroscopy results indicated that the RGO-Ag2Se nanocomposite contained small crystalline Ag2Se nanoparticles dispersed over graphene nanosheets and absorbed visible light. The high crystallinity of the nanoparticles increased photocatalytic activity by facilitating charge transport. N2 adsorption-desorption measurements revealed that the RGO-Ag2Se nanocomposite contained numerous pores with an average diameter of 9 nm, which should allow reactant molecules to readily access the Ag2Se nanoparticles. The RGO-Ag2Se nanocomposite exhibited higher photocatalytic activity than bulk Ag2Se nanoparticles to degrade organic pollutant rhodamine B and industrial dye Texbrite BA-L under visible-light irradiation (λ > 420 nm). The generation of reactive oxygen species in RGO-Ag2Se was evaluated through its ability to oxidize 1,5-diphenylcarbazide to 1,5-diphenylcarbazone. The small size of the Ag2Se nanoparticles in RGO-Ag2Se was related to the use of ultrasonication during their formation, revealing that this approach is attractive to form porous RGO-Ag2Se materials with high photocatalytic activity under visible light.
-
-
-
[1]
[1] Ghosh T, Cho K Y, Ullah K, Nikam V, Park C Y, Meng Z D, Oh W C. J Ind Eng Chem, 2013, 19: 797
-
[2]
[2] Helmes C T, Sigman C C, Fung V A, Thompson K, Doeltz M K, Mackie M, Klein T E, Lent D. J Environ Sci Health A, 1984, 19: 97
-
[3]
[3] Pazarbasi M B, Kocyigit A, Ozdemir G, Yasa I, Karaboz I. Fresen Environ Bull, 2012, 21: 1410
-
[4]
[4] Rauf M A, Meetani M A, Khaleel A, Ahmed A. Chem Eng J, 2010, 157: 373
-
[5]
[5] Aliabadi M, Ghahremani H, Izadkhah F, Sagharigar T. Fresen Environ Bull, 2012, 21: 2120
-
[6]
[6] Das V D, Karunakaran D. Phys Rev B, 1989, 39: 10872
-
[7]
[7] Cao H Q, Xiao Y J, Lu Y X, Yin J F, Li B J, Wu S S, Wu X M. Nano Res, 2010, 3: 863
-
[8]
[8] Haubner K, Murawski J, Olk P, Eng L M, Ziegler C, Adolphi B, Jaehne E. Chem Phys Chem, 2010, 11: 2131
-
[9]
[9] Lupo F, Kamalakaran R, Scheu C, Grobert N, Rühle M. Carbon, 2004, 42: 1995
-
[10]
[10] Zhang X Y, Li H P, Cui X L, Lin Y H. J Mater Chem, 2010, 20: 2801
-
[11]
[11] Abdullah A Z, Ling P Y. J Hazard Mater, 2010, 173: 159
-
[12]
[12] Khallaf H, Chen C T, Chang L B, Lupan O, Dutta A, Heinrich H, Shenouda A, Chow L. Appl Surf Sci, 2011, 257: 9237
-
[13]
[13] Wu N, Losovyj Y B, Wisbey D, Belashchenko K, Manno M, Wang L, Leighton C, Dowben P A. J Phys Condens Matter, 2007, 19: 156
-
[14]
[14] Nilsun H I, Gökce T G. Ultrasonics, 2004, 42: 591
-
[15]
[15] Tai G A, Guo W L. Ultrason Sonochem, 2008, 15: 350
-
[16]
[16] Meng Z D, Zhu L, Oh W C. J Ind Eng Chem, 2012, 18: 2004
-
[17]
[17] Zhu L, Ghosh T, Park C Y, Meng Z D, Oh W C. Chin J Catal (催化学报), 2012, 33: 1276
-
[18]
[18] Oh W C, Zhang F J. Asia J Chem, 2011, 23: 875
-
[19]
[19] Chen X J, Xu H H, Wang Y J, Hu S, Zhang Z X, Zhang Y M. Agric Sci China, 2007, 6: 458
-
[20]
[20] Yang X Y, Zhang X Y, Ma Y F, Huang Y, Wang Y S, Chen Y S. J Mater Chem, 2009, 19: 2710
-
[21]
[21] Chen G Y, Wang D J, Liang C, Wei Z Y, Zhang W X, Liang J C, Wang D M. Rare Metal Mater Eng, 2012, 41: 1153
-
[22]
[22] Yu C C, Yu M, Li C X, Zhang C M, Yang P P, Lin J. Cryst Growth Des, 2009, 9: 783
-
[23]
[23] Oh W C, Chen M L, Zhang K, Zhang F J, Jang W K, Zhang F J. J Korean Phys Soc, 2010, 56: 1097
-
[24]
[24] Zhan Y Q, Meng F B, Lei Y J, Zhao R, Zhong J C, Liu X B. Mater Lett, 2011, 65: 1737
-
[25]
[25] Shigesato Y, Murayama A, Kamimori T, Matsuhiro K. Appl Surf Sci, 1988, 33: 804
-
[26]
[26] Krings L H M, Talen W. Sol Energy Mater Sol Cells, 1998, 54: 27
-
[27]
[27] Chen R Z, Xu D S, Guo G L, Tang Y Q. J Mater Chem, 2002, 12: 1437
-
[28]
[28] Wuttig M. Nat Mater, 2005, 4: 265
-
[29]
[29] Schoen D T, Xie C, Cui Y. J Am Chem Soc, 2007, 129: 4116
-
[30]
[30] Meng Z D, Ullah K, Zhu L, Ye S, Oh W C. Mater Sci Semicon Proc, 2014, 27: 173
-
[31]
[31] Low J X, Yu J G, Li Q, Cheng B. Phys Chem Chem Phys, 2014, 16: 1111
-
[32]
[32] Meng Z D, Ghosh T, Zhu L, Choi J G, Park C Y, Oh W C. J Mater Chem, 2012, 22: 16127
-
[33]
[33] Munter R. Proc Estonian Acad Sci Chem, 2001, 50: 59
-
[1]
-
-
-
[1]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[2]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[3]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[4]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[5]
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
-
[6]
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
-
[7]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[8]
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
-
[9]
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
-
[10]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[11]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[12]
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
-
[13]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[14]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[15]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
-
[16]
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
-
[17]
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
-
[18]
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
-
[19]
Ting Li , Xinxin Zheng , Lejing Qu , Yuanyuan Ou , Sai Qiao , Xue Zhao , Yajun Zhang , Xinfeng Zhao , Qian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792
-
[20]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(238)
- HTML views(22)