Citation:
	            
		            . Multiple Au cores in CeO2 hollow spheres for the superior catalytic reduction of p-nitrophenol[J]. Chinese Journal of Catalysis,
							;2015, 36(3): 261-267.
						
							doi:
								10.1016/S1872-2067(14)60273-4
						
					
				
					
				
	        
- 
	                	In many catalytic systems the structure of the catalyst plays a crucial role in the reaction especially for catalytic reduction, organic pollutant oxidation and other organic transfor-mations. Herein, we report a template-free approach to the synthesis of multiple Au cores in CeO2 hollow spheres (MACCHS). This material was fabricated by impregnating CeO2 hollow spheres with a HAuCl4 aqueous solution. NaBH4 was then used to reduce HAuCl4 to Au nano-particles to form multiple Au cores in the CeO2 hollow spheres. We used MACCHS as a catalyst for p-nitrophenol reduction and achieved excellent activity. The catalyst showed enhanced stability toward p-nitrophenol reduction compared with bare Au nanoparticles and CeO2 hollow spheres. This simple method to achieve multi-core-in-shell hollow structures will likely have applications in various biological, medical and energy related fields.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] Qi J, Zhao T B, Xu X, Li F Y, Sun G D. J Porous Mater, 2011, 18: 69
 - 
			
                    [2]
                
			
[2] Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M. Science, 2007, 318: 1757
 - 
			
                    [3]
                
			
[3] Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Adv Mater, 2012, 24: 2310
 - 
			
                    [4]
                
			
[4] Sun C W, Li H, Chen L Q. Energy Environ Sci, 2012, 5: 8475
 - 
			
                    [5]
                
			
[5] Jiang X, Hua J F, Deng H, Wu Z B. J Mol Catal A, 2014, 383-384: 188
 - 
			
                    [6]
                
			
[6] Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G. Phys Rev B, 2005, 71: 041102
 - 
			
                    [7]
                
			
[7] Qi J, Zhao K, Li G D, Gao Y, Zhao H J, Yu R B, Tang Z Y. Nanoscale, 2014, 6: 4072
 - 
			
                    [8]
                
			
[8] Mogensen M, Lindegaard T, Rud Hansen. J Electrochem Soc, 1994, 141: 2122
 - 
			
                    [9]
                
			
[9] Zhang Q, Lee I, Joo J B, Zaera F, Yin Y D. Acc Chem Res, 2013, 46: 1816
 - 
			
                    [10]
                
			
[10] Liu S H, Han M Y. Chem Asian J, 2009, 5: 36
 - 
			
                    [11]
                
			
[11] Schartl W. Adv Mater, 2000, 12: 1899
 - 
			
                    [12]
                
			
[12] Caruso F. Adv Mater, 2001, 13: 11
 - 
			
                    [13]
                
			
[13] Lee J, Park J C, Song H. Adv Mater, 2008, 20: 1523
 - 
			
                    [14]
                
			
[14] Huang X Q, Guo C Y, Zuo J Q, Zheng N F, Stucky G D. Small, 2009, 5: 361
 - 
			
                    [15]
                
			
[15] Arnal P M, Comotti M, Schüth F. Angew Chem Int Ed, 2006, 45: 8224
 - 
			
                    [16]
                
			
[16] Qi J, Chen J, Li G D, Li S X, Gao Y, Tang Z Y. Energy Environ Sci, 2012, 5: 8937
 - 
			
                    [17]
                
			
[17] Camellone M F, Fabris S. J Am Chem Soc, 2009, 131: 10473
 - 
			
                    [18]
                
			
[18] Zhang N, Fu X Z, Xu Y J. J Mater Chem, 2011, 21: 8152
 - 
			
                    [19]
                
			
[19] Wang X, Liu D P, Song S Y, Zhang H J. J Am Chem Soc, 2013, 135: 15864
 - 
			
                    [20]
                
			
[20] Deng Y H, Cai Y, Sun Z K, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D Y. J Am Chem Soc, 2010, 132: 8466
 - 
			
                    [21]
                
			
[21] Zhang Z Y, Xiao F, Xi J B, Sun T, Xiao S, Wang H R, Wang S, Liu Y Q. Sci Rep, 2014, 4: 4053
 - 
			
                    [22]
                
			
[22] Zaera F. Chem Soc Rev, 2013, 42: 2746
 - 
			
                    [23]
                
			
[23] Li G D, Tang Z Y. Nanoscale, 2014, 6: 3995
 - 
			
                    [24]
                
			
[24] Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K. Angew Chem Int Ed, 2012, 51: 136
 - 
			
                    [25]
                
			
[25] Galeano C, Gttel R, Paul M, Arnal P, Lu A, Schth F. Chem Eur J, 2011, 17: 8434
 - 
			
                    [26]
                
			
[26] Güttel R, Paul M, Galeano C, Schüth F. J Catal, 2012, 289: 100
 - 
			
                    [27]
                
			
[27] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438
 - 
			
                    [28]
                
			
[28] Ma X, Zhao K, Tang H J, Chen Y, Lu C G, Liu W, Gao Y, Zhao H J, Tang Z Y. Small, 2014, 10: 4664
 - 
			
                    [29]
                
			
[29] Guan B Y, Wang T, Zeng S J, Wang X, An D, Wang D M, Cao Y, Ma D X, Liu Y L, Huo Q S. Nano Res, 2014, 7: 246
 - 
			
                    [30]
                
			
[30] Khan M M, Ansari S A, Ansari M O, Min B K, Lee J, Cho M H. J Phys Chem C, 2014, 118: 9477
 - 
			
                    [31]
                
			
[31] Jin Z, Xiao M D, Bao Z H, Wang P, Wang J F. Angew Chem Int Ed, 2012, 51: 6404
 - 
			
                    [32]
                
			
[32] Fan C M, Zhang L F, Wang S S, Wang D H, Lu L Q, Xu A W. Nanoscale, 2012, 4: 6835
 - 
			
                    [33]
                
			
[33] Li X Z, Zhu X H, Fang Y Y, Yang H L, Zhou X C, Chen W M, Jiao L X, Huo H F, Li R. J Mater Chem A, 2014, 2: 10485
 - 
			
                    [34]
                
			
[34] Xu P F, Yu R B, Ren H, Zong L B, Chen J, Xing X R. Chem Sci, 2014, 5: 4221
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
 - 
				[2]
				
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
 - 
				[3]
				
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
 - 
				[4]
				
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
 - 
				[5]
				
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
 - 
				[6]
				
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
 - 
				[7]
				
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
 - 
				[8]
				
Haoran Zhang , Yaxin Jin , Peng Kang , Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099
 - 
				[9]
				
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
 - 
				[10]
				
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
 - 
				[11]
				
Xiaoyong ZHAI , Yao KOU , Pingru SU , Yu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182
 - 
				[12]
				
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
 - 
				[13]
				
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002
 - 
				[14]
				
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
 - 
				[15]
				
Aiyi Xin , Jiawei Li , Xinyang Ran , Chuanjiang Fu , Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031
 - 
				[16]
				
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052
 - 
				[17]
				
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
 - 
				[18]
				
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051
 - 
				[19]
				
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
 - 
				[20]
				
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(251)
 - Abstract views(1042)
 - HTML views(65)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: