Citation: . Multiple Au cores in CeO2 hollow spheres for the superior catalytic reduction of p-nitrophenol[J]. Chinese Journal of Catalysis, ;2015, 36(3): 261-267. doi: 10.1016/S1872-2067(14)60273-4 shu

Multiple Au cores in CeO2 hollow spheres for the superior catalytic reduction of p-nitrophenol

  • Corresponding author:
  • Received Date: 14 November 2014
    Available Online: 15 December 2014

    Fund Project: 国家重点基础研究发展计划(2014CB931801, 唐智勇) (2014CB931801, 唐智勇) 多相复杂系统国家重点实验室(MPCS-2014-A-04, 齐健). (MPCS-2014-A-04, 齐健)

  • In many catalytic systems the structure of the catalyst plays a crucial role in the reaction especially for catalytic reduction, organic pollutant oxidation and other organic transfor-mations. Herein, we report a template-free approach to the synthesis of multiple Au cores in CeO2 hollow spheres (MACCHS). This material was fabricated by impregnating CeO2 hollow spheres with a HAuCl4 aqueous solution. NaBH4 was then used to reduce HAuCl4 to Au nano-particles to form multiple Au cores in the CeO2 hollow spheres. We used MACCHS as a catalyst for p-nitrophenol reduction and achieved excellent activity. The catalyst showed enhanced stability toward p-nitrophenol reduction compared with bare Au nanoparticles and CeO2 hollow spheres. This simple method to achieve multi-core-in-shell hollow structures will likely have applications in various biological, medical and energy related fields.
  • 加载中
    1. [1]

      [1] Qi J, Zhao T B, Xu X, Li F Y, Sun G D. J Porous Mater, 2011, 18: 69

    2. [2]

      [2] Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M. Science, 2007, 318: 1757

    3. [3]

      [3] Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Adv Mater, 2012, 24: 2310

    4. [4]

      [4] Sun C W, Li H, Chen L Q. Energy Environ Sci, 2012, 5: 8475

    5. [5]

      [5] Jiang X, Hua J F, Deng H, Wu Z B. J Mol Catal A, 2014, 383-384: 188

    6. [6]

      [6] Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G. Phys Rev B, 2005, 71: 041102

    7. [7]

      [7] Qi J, Zhao K, Li G D, Gao Y, Zhao H J, Yu R B, Tang Z Y. Nanoscale, 2014, 6: 4072

    8. [8]

      [8] Mogensen M, Lindegaard T, Rud Hansen. J Electrochem Soc, 1994, 141: 2122

    9. [9]

      [9] Zhang Q, Lee I, Joo J B, Zaera F, Yin Y D. Acc Chem Res, 2013, 46: 1816

    10. [10]

      [10] Liu S H, Han M Y. Chem Asian J, 2009, 5: 36

    11. [11]

      [11] Schartl W. Adv Mater, 2000, 12: 1899

    12. [12]

      [12] Caruso F. Adv Mater, 2001, 13: 11

    13. [13]

      [13] Lee J, Park J C, Song H. Adv Mater, 2008, 20: 1523

    14. [14]

      [14] Huang X Q, Guo C Y, Zuo J Q, Zheng N F, Stucky G D. Small, 2009, 5: 361

    15. [15]

      [15] Arnal P M, Comotti M, Schüth F. Angew Chem Int Ed, 2006, 45: 8224

    16. [16]

      [16] Qi J, Chen J, Li G D, Li S X, Gao Y, Tang Z Y. Energy Environ Sci, 2012, 5: 8937

    17. [17]

      [17] Camellone M F, Fabris S. J Am Chem Soc, 2009, 131: 10473

    18. [18]

      [18] Zhang N, Fu X Z, Xu Y J. J Mater Chem, 2011, 21: 8152

    19. [19]

      [19] Wang X, Liu D P, Song S Y, Zhang H J. J Am Chem Soc, 2013, 135: 15864

    20. [20]

      [20] Deng Y H, Cai Y, Sun Z K, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D Y. J Am Chem Soc, 2010, 132: 8466

    21. [21]

      [21] Zhang Z Y, Xiao F, Xi J B, Sun T, Xiao S, Wang H R, Wang S, Liu Y Q. Sci Rep, 2014, 4: 4053

    22. [22]

      [22] Zaera F. Chem Soc Rev, 2013, 42: 2746

    23. [23]

      [23] Li G D, Tang Z Y. Nanoscale, 2014, 6: 3995

    24. [24]

      [24] Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K. Angew Chem Int Ed, 2012, 51: 136

    25. [25]

      [25] Galeano C, Gttel R, Paul M, Arnal P, Lu A, Schth F. Chem Eur J, 2011, 17: 8434

    26. [26]

      [26] Güttel R, Paul M, Galeano C, Schüth F. J Catal, 2012, 289: 100

    27. [27]

      [27] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438

    28. [28]

      [28] Ma X, Zhao K, Tang H J, Chen Y, Lu C G, Liu W, Gao Y, Zhao H J, Tang Z Y. Small, 2014, 10: 4664

    29. [29]

      [29] Guan B Y, Wang T, Zeng S J, Wang X, An D, Wang D M, Cao Y, Ma D X, Liu Y L, Huo Q S. Nano Res, 2014, 7: 246

    30. [30]

      [30] Khan M M, Ansari S A, Ansari M O, Min B K, Lee J, Cho M H. J Phys Chem C, 2014, 118: 9477

    31. [31]

      [31] Jin Z, Xiao M D, Bao Z H, Wang P, Wang J F. Angew Chem Int Ed, 2012, 51: 6404

    32. [32]

      [32] Fan C M, Zhang L F, Wang S S, Wang D H, Lu L Q, Xu A W. Nanoscale, 2012, 4: 6835

    33. [33]

      [33] Li X Z, Zhu X H, Fang Y Y, Yang H L, Zhou X C, Chen W M, Jiao L X, Huo H F, Li R. J Mater Chem A, 2014, 2: 10485

    34. [34]

      [34] Xu P F, Yu R B, Ren H, Zong L B, Chen J, Xing X R. Chem Sci, 2014, 5: 4221

  • 加载中
    1. [1]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    7. [7]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(251)
  • Abstract views(817)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return