Citation: Suthida Authayanun, Karittha Im-orb, Amornchai Arpornwichanop. A review of the development of high temperature proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, ;2015, 36(4): 473-483. doi: 10.1016/S1872-2067(14)60272-2 shu

A review of the development of high temperature proton exchange membrane fuel cells

  • Corresponding author: Amornchai Arpornwichanop, 
  • Received Date: 17 October 2014
    Available Online: 13 December 2014

    Fund Project:

  • Due to the need for clean energy, the development of an efficient fuel cell technology for electricity generation has received considerable attention. Much of the current research efforts have investigated the materials for and process development of fuel cells, including the optimization and simplification of the fuel cell components, and the modeling of the fuel cell systems to reduce their cost and improve their performance, durability and reliability to enable them to compete with the conventional combustion engine. A high temperature proton exchange membrane fuel cell (HT-PEMFC) is an interesting alternative to conventional PEMFCs as it is able to mitigate CO poisoning and water management problems. Although the HT-PEMFC has many attractive features, it also possesses many limitations and presents several challenges to its widespread commercialization. In this review, the trends of HT-PEMFC research and development with respect to electrochemistry, membrane, modeling, fuel options, and system design were presented.
  • 加载中
    1. [1]

      [1] Song W, Yu H M, Shao Z G, Yi B L, Lin J, Liu N. Chin J Catal (宋微, 俞红梅, 邵志刚, 衣宝廉, 林瑾, 刘娜. 催化学报), 2014, 35: 468

    2. [2]

      [2] Yan Z Y, Li B, Yang D J, Ma J X. Chin J Catal (严泽宇, 李冰, 杨代军, 马建新. 催化学报), 2013, 34: 1471

    3. [3]

      [3] Bose S, Kuila T, Nguyen T X H, Kim N H, Lau K-t, Lee J H. Prog Polym Sci, 2011, 36: 813

    4. [4]

      [4] Dupuis A C. Prog Mater Sci, 2011, 56: 289

    5. [5]

      [5] Li Q F, Jensen J O, Savinell R F, Bjerrum N J. Prog Polym Sci, 2009, 34: 449

    6. [6]

      [6] Park C H, Lee C H, Guiver M D, Lee Y M. Prog Polym Sci, 2011, 36: 1443

    7. [7]

      [7] Antonio Asensio J, Sanchez E M, Gomez-Romero P. Chem Soc Rev, 2010, 39: 2310

    8. [8]

      [8] Li Q F, He R H, Gao J A, Jensen J O, Bjerrum N J. J Electrochem Soc, 2003, 150: A1599

    9. [9]

      [9] Zhang J L, Xie Z, Zhang J J, Tang Y H, Song C J, Navessin T, Shi Z Q, Song D T, Wang H J, Wilkinson D P, Liu Z S, Holdcroft S. J Power Sources, 2006, 160: 872

    10. [10]

      [10] Authayanun S, Mamlouk M, Arpornwichanop A. Int J Hydrogen Energ, 2012, 37: 6808

    11. [11]

      [11] Modestov A D, Tarasevich M R, Filimonov V Y, Davydova E S. Electrochim Acta, 2010, 55: 6073

    12. [12]

      [12] Linares J J, Sanches C, Paganin V A, Gonzalez E R. Int J Hydrogen Energ, 2012, 37: 7212

    13. [13]

      [13] Oettel C, Rihko-Struckmann L, Sundmacher K. Int J Hydrogen Energ, 2012, 37: 11759

    14. [14]

      [14] Nepel T C M, Lopes P P, Paganin V A, Ticianelli E A. Electrochim Acta, 2013, 88: 217

    15. [15]

      [15] Gasteiger H A, Markovic N M, Ross P N Jr. J Phys Chem, 1995, 99: 16757

    16. [16]

      [16] Davies J C, Hayden B E, Pegg D J. Electrochim Acta, 1998, 44: 1181

    17. [17]

      [17] Zhang S S, Yuan X Z, Hin J N C, Wang H J, Friedrich K A, Schulze M. J Power Sources, 2009, 194: 588

    18. [18]

      [18] Arico A S, Stassi A, Modica E, Ornelas R, Gatto I, Passalacqua E, Antonucci V. J Power Sources, 2008, 178: 525

    19. [19]

      [19] Borup R L, Davey J R, Garzon F H, Wood D L, Inbody M A. J Power Sources, 2006, 163: 76

    20. [20]

      [20] Colon-Mercado H R, Popov B N. J Power Sources, 2006, 155: 253

    21. [21]

      [21] Nörskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. J Phys Chem B, 2004, 108: 17886

    22. [22]

      [22] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Appl Catal B, 2005, 56: 9

    23. [23]

      [23] Chandan A, Hattenberger M, El-kharouf A, Du S F, Dhir A, Self V, Pollet B G, Ingram A, Bujalski W. J Power Sources, 2013, 231: 264

    24. [24]

      [24] Schenk A, Grimmer C, Perchthaler M, Weinberger S, Pichler B, Heinzl C, Scheu C, Mautner F A, Bitschnau B, Hacker V. J Power Sources, 2014, 266: 313

    25. [25]

      [25] Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Nat Mater, 2007, 6: 241

    26. [26]

      [26] Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Marković N M. Science, 2007, 315: 493

    27. [27]

      [27] Toda T, Igarashi H, Uchida H, Watanabe M. J Electrochem Soc, 1999, 146: 3750

    28. [28]

      [28] Jung G B, Tseng C C, Yeh C C, Lin C Y. Int J Hydrogen Energ, 2012, 37: 13645

    29. [29]

      [29] Su H N, Pasupathi S, Bladergroen B, Linkov V, Pollet B G. Int J Hydrogen Energ, 2013, 38: 11370

    30. [30]

      [30] Lee K S, Yoo S J, Ahn D, Kim S K, Hwang S J, Sung Y E, Kim H J, Cho E A, Henkensmeier D, Lim T H, Jang J H. Electrochim Acta, 2011, 56: 8802

    31. [31]

      [31] Mamlouk M, Scott K. Int J Hydrogen Energ, 2010, 35: 784

    32. [32]

      [32] Gottesfeld S, Raistrick I D, Srinivasan S. J Electrochem Soc, 1987, 134: 1455

    33. [33]

      [33] Floriano J B, Ticianelli E A, Gonzalez E R. J Electroanal Chem, 1994, 367: 157

    34. [34]

      [34] Strmcnik D, Escudero-Escribano M, Kodama K, Stamenkovic V R, Cuesta A, Marković N M. Nature Chem, 2010, 2: 880

    35. [35]

      [35] Mamlouk M, Scott K. J Power Sources, 2011, 196: 1084

    36. [36]

      [36] Park H Y, Yoo S J, Kim S J, Lee S Y, Ham H C, Sung Y E, Kim S K, Hwang S J, Kim H J, Cho E A, Henkensmeier D, Nam S W, Lim T H, Jang J H. Electrochem Commun, 2013, 27: 46

    37. [37]

      [37] Cheddie D, Munroe N. Energ Convers Manage, 2006, 47: 1490

    38. [38]

      [38] Scott K, Pilditch S, Mamlouk M. J Appl Electrochem, 2007, 37: 1245

    39. [39]

      [39] Mamlouk M, Sousa T, Scott K. Int J Electrochem, 2011, 2011: 1

    40. [40]

      [40] Kim M, Kang T, Kim J, Sohn Y J. Solid State Ionics, 2014, 262: 319

    41. [41]

      [41] Kim J, Kim M, Kang T, Sohn Y J, Song T, Choi K H. Energy, 2014, 66: 41

    42. [42]

      [42] Sousa T, Mamlouk M, Scott K. Chem Eng Sci, 2010, 65: 2513

    43. [43]

      [43] Sousa T, Mamlouk M, Scott K. Int J Hydrogen Energ, 2010, 35: 12065

    44. [44]

      [44] Shamardina O, Chertovich A, Kulikovsky A A, Khokhlov A R. Int J Hydrogen Energ, 2010, 35: 9954

    45. [45]

      [45] Shamardina O, Kondratenko M S, Chertovich A V, Kulikovsky A A. Int J Hydrogen Energ, 2014, 39: 2224

    46. [46]

      [46] Grigoriev S A, Kalinnikov A A, Kuleshov N V, Millet P. Int J Hydrogen Energ, 2013, 38: 8557

    47. [47]

      [47] Su A, Ferng Y M, Hou J, Yu T L. Int J Hydrogen Energ, 2012, 37: 7710

    48. [48]

      [48] Sohn Y J, Kim M, Yang T H, Kim K. Int J Hydrogen Energ, 2011, 36: 15273q.

    49. [49]

      [49] Bergmann A, Gerteisen D, Kurz T. Fuel Cells, 2010, 10: 278

    50. [50]

      [50] Ubong E U, Shi Z, Wang X. J Electrochem Soc, 2009, 156: B1276

    51. [51]

      [51] Sinha P K, Wang C Y, Beuscher U. J Electrochem Soc, 2007, 154: B106

    52. [52]

      [52] Su A, Ferng Y M, Shih J C. Appl Therm Eng, 2009, 29: 3409

    53. [53]

      [53] Peng J, Shin J Y, Song T W. J Power Sources, 2008, 179: 220

    54. [54]

      [54] Park J, Min K. J Power Sources, 2012, 216: 152

    55. [55]

      [55] Chippar P, Ju H. Solid State Ionics, 2012, 225: 30

    56. [56]

      [56] Chippar P, Ju H. Int J Hydrogen Energ, 2013, 38: 7704

    57. [57]

      [57] Kvesic M, Reimer U, Froning D, Lüke L, Lehnert W, Stolten D. Int J Hydrogen Energ, 2012, 37: 2430

    58. [58]

      [58] Kvesic M, Reimer U, Froning D, Lüke L, Lehnert W, Stolten D. Int J Hydrogen Energ, 2012, 37: 12438

    59. [59]

      [59] Jiao K, Alaefour I E, Li X G. Fuel, 2011, 90: 568

    60. [60]

      [60] Jiao K, Zhou Y B, Du Q, Yin Y, Yu S H, Li X G. Appl Energ, 2013, 104: 21

    61. [61]

      [61] Oh K, Chippar P, Ju H. Int J Hydrogen Energ, 2014, 39: 2785

    62. [62]

      [62] Araya S S, Andreasen S J, Kær S K. Energies, 2012, 5: 4251

    63. [63]

      [63] Authayanun S, Arpornwichanop A, Patcharavorachot Y, Wiyaratn W, Assabumrungrat S. Int J Hydrogen Energ, 2011, 36: 267

    64. [64]

      [64] Authayanun S, Mamlouk M, Scott K, Arpornwichanop A. Appl Energ, 2013, 109: 192

    65. [65]

      [65] Liu Q H, Liu Z L, Liao LW, Dong X F. J Nat Gas Chem, 2010, 19: 497

    66. [66]

      [66] Maciel C G, Profeti L P R, Assaf E M, Assaf J M. J Power Sources, 2011, 196: 747

    67. [67]

      [67] Pan C, He R H, Li Q F, Jensen J O, Bjerrum N J, Hjulmand H A, Jensen A B. J Power Sources, 2005, 145: 392

    68. [68]

      [68] Andreasen S J, Kær S K, Sahlin S. Int J Hydrogen Energ, 2013, 38: 1676

    69. [69]

      [69] Avgouropoulos G, Papavasiliou J, Daletou M K, Kallitsis J K, Ioannides T, Neophytides S. Appl Catal B, 2009, 90: 628

    70. [70]

      [70] Araya S S, Andreasen S J, Nielsen H V, Kær S K. Int J Hydrogen Energ, 2012, 37: 18231

    71. [71]

      [71] Snytnikov P V, Badmaev S D, Volkova G G, Potemkin D I, Zyryanova M M, Belyaev V D, Sobyanin V A. Int J Hydrogen Energ, 2012, 37: 16388

    72. [72]

      [72] Sopena D, Melgar A, Briceno Y, Navarro R M, Alvarez-Galvan M C, Rosa F. Int J Hydrogen Energ, 2007, 32: 1429

    73. [73]

      [73] Hubert C E, Achard P, Metkemeijer R. J Power Sources, 2006, 156: 64

    74. [74]

      [74] Jaggi V, Jayanti S. Appl Energ, 2013, 110: 295

    75. [75]

      [75] Gardemann U, Steffen M, Heinzel A. Int J Hydrogen Energ, 2014, 39: 18135

    76. [76]

      [76] Wichert M, Men Y, O'Connell M, Tiemann D, Zapf R, Kolb G, Butschek S, Frank R, Schiegl A. Int J Hydrogen Energ, 2011, 36: 3496

    77. [77]

      [77] Engelhardt P, Maximini M, Beckmann F, Brenner M, Moritz O. Int J Hydrogen Energ, 2014, 39: 18146

    78. [78]

      [78] Authayanun S, Wiyaratn W, Assabumrungrat S, Arpornwichanop A. Fuel, 2013, 105: 345

    79. [79]

      [79] Authayanun S, Saebea D, Patcharavorachot Y, Arpornwichanop A. Energy, 2014, 68: 989

    80. [80]

      [80] Park J, Min K. Int J Hydrogen Energ, 2014, 39: 10683

    81. [81]

      [81] Rabiu A M, Dlangamandla N, Ulleberg Ö. APCBEE Procedia, 2012, 3: 17

    82. [82]

      [82] Jensen J O, Li Q F, Pan C, Vestbö A P, Mortensen K, Petersen H N, Sörensen C L, Clausen T N, Schramm J, Bjerrum N J. Int J Hydrogen Energ, 2007, 32: 1567

    83. [83]

      [83] Pasdag O, Kvasnicka A, Steffen M, Heinzel A. Energy Procedia, 2012, 28: 57

    84. [84]

      [84] Samsun R C, Pasel J, JanBen H, Lehnert W, Peters R, Stolten D. Appl Energ, 2014, 114: 238

    85. [85]

      [85] Arsalis A, Nielsen M P, Kær S K. Int J Hydrogen Energ, 2011, 36: 5010

    86. [86]

      [86] Jannelli E, Minutillo M, Perna A. Appl Energ, 2013, 108: 82

    87. [87]

      [87] Romero-Pascual E, Soler J. Int J Hydrogen Energ, 2014, 39: 4053

    88. [88]

      [88] Arsalis A, Nielsen M P, Kær S K. Int J Hydrogen Energ, 2011, 36: 5010

    89. [89]

      [89] Giacoppo G, Barbera O, Carbone A, Gatto I, Sacca A, Pedicini R, Passalacqua E. Int J Hydrogen Energ, 2013, 38: 11619

    90. [90]

      [90] Barelli L, Bidini G, Gallorini F, Ottaviano A. Appl Energ, 2011, 88: 4334

    91. [91]

      [91] Oh S D, Kim K Y, Oh S B, Kwak H Y. Appl Energ, 2012, 95: 93

    92. [92]

      [92] Briguglio N, Ferraro M, Brunaccini G, Antonucci V. Int J Hydrogen Energ, 2011, 36: 8023

    93. [93]

      [93] Korsgaard A R, Nielsen M P, Kær S K. Int J Hydrogen Energ, 2008, 33: 1909

    94. [94]

      [94] Arsalis A, Nielsen M P, Kær S K. Energy, 2011, 36: 993

    95. [95]

      [95] Arsalis A, Nielsen M P, Kær S K. Int J Hydrogen Energ, 2012, 37: 2470

    96. [96]

      [96] Arsalis A. Int J Hydrogen Energ, 2012, 37: 13484

  • 加载中
    1. [1]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    2. [2]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    3. [3]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    4. [4]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    5. [5]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    6. [6]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    7. [7]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    8. [8]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    9. [9]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    10. [10]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    11. [11]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    14. [14]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    20. [20]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

Metrics
  • PDF Downloads(251)
  • Abstract views(677)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return