Citation:
Yongxia Wang, Minghui Zuo, Yuesheng Li. Theoretical investigation of the mechanism of ethylene polymerization with salicylaldiminato vanadium(Ⅲ) complexes[J]. Chinese Journal of Catalysis,
;2015, 36(4): 657-666.
doi:
10.1016/S1872-2067(14)60271-0
-
The use of vanadium-based catalysts allows the preparation of high molecular mass polymers with uniform molecular mass distributions, polypropylene and ethylene/α-olefin copolymers with high α-olefin incorporation. However, the design of ligand systems with vanadium catalysts would face difficulties, because it is difficult to experimentally determine the structures of the active species of vanadium catalysts. In this paper, possible structural candidates for the active species in ethylene polymerization catalyzed by the salicylaldiminato vanadium complex combined with AlEt2Cl were investigated using density functional theory. By comparing theoretical simulation results with previous experimental investigations, especially regarding the crucial role of the diethyaluminum chloride (AlEt2Cl) cocatalyst, it was concluded that a neutral bimetallic species containing two Al-Cl-V bridging bonds is the most favorable structure model for the active vanadium species. A notable effect of Al co-catalysts was clarified in the theoretical investigation. During the formation of the active species, AlEt2Cl act as an assistant for the alkylation and alkyl abstract processes of precursors. More importantly, AlEt2Cl is necessary for the formation of the bis(chlorine-bridged) structure in the active species, which showed a notable effect on the structural stability of the active species and its catalytic activity. Additionally, we investigated the chain termination mechanism in this system.
-
-
-
[1]
[1] Ziegler K. Angew Chem, 1964, 76: 545
-
[2]
[2] Natta G. Angew Chem, 1956, 68: 393
-
[3]
[3] Carrick W L. J Am Chem Soc, 1958, 80: 6455
-
[4]
[4] Carrick W L, Kluiber R W, Bonner E F, Wartman L H, Rugg F M, Smith J J. J Am Chem Soc, 1960, 82: 3883
-
[5]
[5] Natta G, Pasquon I, Zambelli A. J Am Chem Soc, 1962, 84: 1488
-
[6]
[6] Natta G, Zambelli A, Lanzi G, Pasquon I, Mognaschi E R, Segre A L, Centola P. Makromol Chem, 1965, 81: 161
-
[7]
[7] Zambelli A, Pasquon I, Signorini R, Natta G. Makromol Chem, 1968, 112: 160
-
[8]
[8] Doi Y, Kinoshita J, Morinaga A, Keii T. J Polym Sci A, 1975, 13: 2491
-
[9]
[9] Christman D L, Keim G I. Macromolecules, 1968, 1: 358
-
[10]
[10] Doi Y, Suzuki S, Soga K. Macromolecules, 1986, 19: 2896
-
[11]
[11] Doi Y, Tokuhiro N, Nunomura M, Miyake H, Suzuki S, Soga K. In: Kaminsky W, Sinn H Eds. Transition Metals and Organometallics as Catalysts for Olefin Polymerization. Berlin: Springer-Verlag, 1988. 379
-
[12]
[12] Adisson E, Deffieux A, Fontanille M, Bujadoux K. J Polym Sci A, 1994, 32: 1033
-
[13]
[13] Tomov A K, Gibson V C, Zaher D, Elsegood M R J, Dale S H. Chem Commun, 2004: 1956
-
[14]
[14] Wang W, Nomura K. Macromolecules, 2005, 38: 5905
-
[15]
[15] Redshaw C, Rowan M A, Homden D M, Dale S H, Elsegood M R J, Matsui S, Matsuura S. Chem Commun, 2006: 3329
-
[16]
[16] Zambelli A, Sessa I, Grisi F, Fusco R, Accomazzi P. Macromol Rapid Commun, 2001, 22: 297
-
[17]
[17] Nomura K, Zhang S. Chem Rev, 2011, 111: 2342
-
[18]
[18] Wu J Q, Pan L, Hu N H, Li Y S. Organometallics, 2008, 27: 3840
-
[19]
[19] Wu J Q, Pan L, Li Y G, Liu S R, Li Y S. Organometallics, 2009, 28: 1817
-
[20]
[20] Wu J Q, Pan L, Liu S R, He L P, Li Y S. J Polym Sci A, 2009, 47: 3573
-
[21]
[21] Wu J Q, Mu J S, Zhang S W, Li Y S. J Polym Sci A, 2010, 48: 1122
-
[22]
[22] Doi Y, Suzuki S, Hizai G, Soga K. In: Quirk R P Ed. Transition Metal Catalyzed Polymerization. Cambridge: Cambridge University Press, 1988. 182
-
[23]
[23] Evens G G, Pijpers E M J, Seevens R H M. In: Quirk R P Ed. Transition Metal Catalyzed Polymerization. Cambridge: Cambridge University Press, 1988. 782
-
[24]
[24] Coles M P, Gibson V C. Polym Bull, 1994, 33: 529
-
[25]
[25] Niu S Q, Hall M B. Chem Rev, 2000, 100: 353
-
[26]
[26] Lohrenz J C W, Woo T K, Fan L Y, Ziegler T. J Organomet Chem, 1995, 497: 91
-
[27]
[27] Ziegler T. Chem Rev, 1991, 91: 651
-
[28]
[28] Liu Z, Zhong L, Yang Y, Cheng R H, Liu B P. J Phys Chem A, 2011, 115: 8131
-
[29]
[29] Kawamura-Kuribayashi H, Koga N, Morokuma K. J Am Chem Soc, 1992, 114: 8687
-
[30]
[30] Kawamura-Kuribayashi H, Koga N, Morokuma K. J Am Chem Soc, 1992, 114: 2359
-
[31]
[31] Shiga A, Kawamura H, Ebara T, Sasaki T, Kikuzono Y. J Organomet Chem, 1989, 366: 95
-
[32]
[32] Prosenc M H, Janiak C, Brintzinger H H. Organometallics, 1992, 11: 4036
-
[33]
[33] Wang D Q, Tomasi S, Razavi A, Ziegler T. Organometallics, 2008, 27: 2861
-
[34]
[34] Cramer C J, Truhlar D G. Phys Chem Chem Phys, 2009, 11: 10757
-
[35]
[35] Cavallo L, Guerra G, Vacatello M, Corradini P. Macromolecules, 1991, 24: 1784
-
[36]
[36] Bühl M. Organometallics, 1999, 18: 4894
-
[37]
[37] te Velde G, Bickelhaupt F M, Baerends E J, Guerra C F, Van Gisbergen S J A, Snijders J G, Ziegler T. J Comput Chem, 2001, 22: 931
-
[38]
[38] Becke A D. Phys Rev A, 1988, 38: 3098
-
[39]
[39] Perdew J P. Phys Rev B, 1986, 33: 8822
-
[40]
[40] Zhao Y, Truhlar D G. J Chem Phys, 2006, 125: 194101
-
[41]
[41] Reiher M, Salomon O, Hess B A. Theor Chem Acc, 2001, 107: 48
-
[42]
[42] Cossee P. J Catal, 1964, 3: 80
-
[43]
[43] Sinn H, Kaminsky W, Vollmer H J, Woldt R. Angew Chem Int Ed Engl, 1980, 19: 390
-
[44]
[44] Kaminsky W, Miri M, Sinn H, Woldt R. Makromol Chem Rapid Commun, 1983, 4: 417
-
[1]
-
-
-
[1]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[2]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[7]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[8]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[9]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[10]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[11]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[12]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[13]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[14]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[15]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[16]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[17]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[18]
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
-
[19]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[20]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(250)
- HTML views(18)