Citation: Alice Hospodková, Ladislav Svoboda, Petr Praus. Dependence of photocatalytic activity of ZnxCd1-xS quantum dot composition[J]. Chinese Journal of Catalysis, ;2015, 36(3): 328-335. doi: 10.1016/S1872-2067(14)60269-2 shu

Dependence of photocatalytic activity of ZnxCd1-xS quantum dot composition

  • Corresponding author: Petr Praus, 
  • Received Date: 26 November 2014
    Available Online: 26 November 2014

  • Aqueous colloidal dispersions containing ZnxCd1-xS quantum dots (QDs) of different x compositions were prepared by precipitating zinc and cadmium acetates with sodium sulphide, in the presence of a cetyltrimethylammonium bromide stabilizer. Ultraviolet-visible absorption spectroscopy was used to determine the transition energies of the QDs, which in turn were used to calculate their sizes, which depended on their composition. The QD size decreased with increasing Zn content. The photocatalytic activity of the ZnxCd1-xS QDs was studied by the decomposition of methylene blue under ultraviolet irradiation, at a maximum intensity at 365 nm (3.4 eV). Three different photocatalytic activity regions were observed, which depended on the Zn content. The quantum levels of the QDs could be excited by incident irradiation, and influenced the resulting photocatalytic activity. Maximum photocatalytic activity was achieved at x=0.6, where the QD transition energy was equal to the irradiation photon energy. The photocatalytic efficiency of the QDs depended on their surface area and arrangement of quantum levels, because of the quantum size effect.
  • 加载中
    1. [1]

      [1] Hirai T, Sato H, Komasawa I. Ind Eng Chem Res, 1994, 33: 3362

    2. [2]

      [2] Schmid G. Nanoparticles: From Theory to Applications. Weinheim: Wiley-VCH, 2010

    3. [3]

      [3] Dutta K, Manna S, De S K. Synth Metals, 2009, 159: 315

    4. [4]

      [4] Dib M, Chamarro M, Voliotis V, Fave J L, Guenand C, Roussignol P, Gacoin T, Boilot J P, Delerue C, Allan G, Lanoo M. Phys Stat Sol (b), 1999, 212: 293

    5. [5]

      [5] Li Q, Meng H, Yu J G, Xiao W, Zheng Y Q, Wang J. Chem Eur J, 2014, 20: 1176

    6. [6]

      [6] Xu X, Lu R J, Zhao X F, Xu S, Lei X D, Zhang F Z, Evans D G. Appl Catal B, 2011, 102: 147

    7. [7]

      [7] Xu X, Lu R J, Zhao X F, Zhu Z, Xu S, Zhang F Z. Appl Catal B, 2012, 125: 11

    8. [8]

      [8] Li Y C, Ye M F, Yang C H, Li X H, Li Y F. Adv Func Mater, 2005, 15: 433

    9. [9]

      [9] Liu Y K, Zapien J A, Shan Y Y, Gen C Y, Lee C S, Lee S T. Adv Matter, 2005, 17: 1372

    10. [10]

      [10] Zhong X H, Liu S H, Zhang Z H, Li L, Wei Z, Knoll W. J Mater Chem, 2004, 14: 2790

    11. [11]

      [11] Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J G, Gong J R. ACS Catal, 2013, 3: 882

    12. [12]

      [12] Yu J G, Zhang J, Jaroniec M. Green Chem, 2010, 9: 1611

    13. [13]

      [13] Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D. Prog Mater Sci, 2011, 56: 175

    14. [14]

      [14] Kočí K, Reli M, Kozák O, Lacný Z, Plachá D, Praus P, Obalová L. Catal Today, 2011, 176: 212

    15. [15]

      [15] Praus P, Kozák O, Kočí K, Panáček A, Dvorský R. J Colloid Interf Sci, 2011, 360: 574

    16. [16]

      [16] Praus P, Matys J, Kozák O. J Braz Chem Soc, 2012, 23: 1900

    17. [17]

      [17] Praus P, Svoboda L, Tokarský J, Hospodková A, Klem V. Appl Surf Sci, 2014, 292: 813

    18. [18]

      [18] Chiou C H, Wu C Y, Juang R S. Sep Purif Technol, 2008, 62: 559

    19. [19]

      [19] Praus P, Dvorský R, Horínková P, Pospíšil M, Kovář P. J Colloid Interf Sci, 2012, 377: 58

    20. [20]

      [20] Schooss D, Mews A, Eychmüller A, Weller H. Phys Rev B, 1994, 49: 17072

    21. [21]

      [21] Zgaren I, Balti J, Jaziri S. Solid State Commun, 2011, 151: 1743

    22. [22]

      [22] Brus L E. J Chem Phys, 1984, 80: 4403

    23. [23]

      [23] Tauc J, Grigorovici R, Vancu A. Phys Stat Sol (b), 1966, 15: 627

    24. [24]

      [24] Hospodková A, Nikl M, Pacherová O, Oswald J, Brůža P, Pánek D, Foltynski B, Hulicius E, Beitlerová A, Heuken M. Nanotechnology, 2014, 25: 455501

    25. [25]

      [25] Kulkarni S K, Winkler U, Deshmukh N, Borse P H, Fink R, Umbach E. Appl Surf Sci, 2001, 169-170: 438

    26. [26]

      [26] Tokarský J, Matějka V, Neuwirthová L, Vontorová J, Mamulová Kutláková K, Kukutschová J, Čapková P. Chem Eng J, 2013, 222: 488

    27. [27]

      [27] Roberts G W, Satterfield C N. Ind Eng Chem Fund, 1965, 4: 288

    28. [28]

      [28] Kumar K V, Porkodi K, Rocha F. Catal Commun, 2008, 9: 82

    29. [29]

      [29] Brosillon S, Lhomme L, Vallet C, Bouzaza A, Wolbert D. Appl Catal B, 2008, 18: 232

  • 加载中
    1. [1]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    2. [2]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    3. [3]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    9. [9]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    10. [10]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    11. [11]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    12. [12]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    13. [13]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    14. [14]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    15. [15]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    18. [18]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    19. [19]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

Metrics
  • PDF Downloads(234)
  • Abstract views(559)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return