Citation: M. Konsolakis, G. E. Marnellos, A. Al-Musa, N. Kaklidis, I. Garagounis, V. Kyriakou. Carbon to electricity in a solid oxide fuel cell combined with an internal catalytic gasification process[J]. Chinese Journal of Catalysis, ;2015, 36(4): 509-516. doi: 10.1016/S1872-2067(14)60262-X shu

Carbon to electricity in a solid oxide fuel cell combined with an internal catalytic gasification process

  • Corresponding author: M. Konsolakis, 
  • Received Date: 12 October 2014
    Available Online: 8 December 2014

  • This study explores strategies to develop highly efficient direct carbon fuel cells (DCFCs) by combining a solid-oxide fuel cell (SOFC) with a catalyst-aided carbon-gasification process. This system employs Cu/CeO2 composites as both anodic electrodes and carbon additives in a cell of the type: carbon|Cu-CeO2/YSZ/Ag|air. The study investigates the impact on in situ carbon-gasification and DCFC performance characteristics of catalyst addition and variation in the carrier gas used (inert He versus reactive CO2). The results indicate that cell performance is significantly improved by infusing the catalyst into the carbon feedstock and by employing CO2 as the carrier gas. At 800 ℃, the maximum power output is enhanced by approximately 40% and 230% for carbon/CO2 and carbon/catalyst/CO2 systems, respectively, compared with that of the carbon/He configuration. The increase observed when employing the catalyst and CO2 as the carrier gas can be primarily attributed to the pronounced effect of the catalyst on carbon-gasification through the reverse-Boudouard reaction, and the subsequent in situ electro-oxidation of CO at the anode three-phase boundary.
  • 加载中
    1. [1]

      [1] International Energy Outlook 2011, U.S. Energy Information administration, http: // www.eia.gov / forecasts / ieo / pdf / 0484 (2011). pdf

    2. [2]

      [2] Wang J G, Li Y W, Han Y Z, Sun Y H, Fang Y T, Zhao J T, Qin Z F. Chin J Catal (王建国, 李永旺, 韩怡卓, 孙予罕, 房倚天, 赵建涛, 秦张峰. 催化学报), 2009, 30: 770

    3. [3]

      [3] Giddey S, Badwal S P S, Kulkarni A, Munnings C. Prog Energ Combust Sci, 2012, 38: 360

    4. [4]

      [4] Kirubakaran A, Jain S, Nema R K. Renew Sust Energ Rev, 2009, 13: 2430

    5. [5]

      [5] Wu W M, Liu Z B, Zhao Z, Zhang X M, Ou D R, Tu B F, Cui D A, Cheng M J. Chin J Catal (武卫明, 刘中波, 赵哲, 张小敏, 区定容, 涂宝峰, 崔大安, 程谟杰. 催化学报), 2014, 35: 1376

    6. [6]

      [6] Zhang L M, Cong Y, Yang W S, Lin L W. Chin J Catal (张丽敏, 丛铀, 杨维慎, 林励吾. 催化学报), 2007, 28: 749

    7. [7]

      [7] Rady A C, Giddey S, Badwal S P S, Ladewing B P, Bhattacharya S. Energy Fuels, 2012, 26: 1471

    8. [8]

      [8] Gür T M. Chem Rev, 2013, 113: 6179

    9. [9]

      [9] Li X, Zhu Z, De Marco R, Bradley J, Dicks A. J Phys Chem A, 2010, 114: 3855

    10. [10]

      [10] Nürnberger S, Bussar R, Desclaux P, Franke B, Rzepka M, Stimming U. Energy Environ Sci, 2010, 3: 150

    11. [11]

      [11] Zhang J B, Zhong Z P, Zhao J X, Yang M, Li W L, Zhang H Y. Can J Chem Eng, 2012, 90: 762

    12. [12]

      [12] Lee C G, Ahn K S, Lim H C, Oh J M. J Power Sources, 2004, 125: 166

    13. [13]

      [13] Jain S, Lakeman B, Pointon K D, Irvine J T. In: Eguchi K, Singhai S C, Yokokawa H, Mizusaki H, Eds. Solid Oxide Fuel Cells 10 (SOFC-X). New York: the Electrochemical Society, 2007. 829

    14. [14]

      [14] Zecevic S, Patton E M, Parhami P. Carbon, 2004, 422: 1983

    15. [15]

      [15] Cherepy N J, Krueger R, Fiet K J, Jankowski A F, Cooper J F. J Electrochem Soc, 2005, 152: A80

    16. [16]

      [16] Dicks A L. J Power Sources, 2006, 156: 128

    17. [17]

      [17] Cao D X, Sun Y, Wang G L. J Power Sources, 2007, 167: 250

    18. [18]

      [18] Tang Y B, Liu J. Int J Hydrogen Energy, 2011, 35: 11188

    19. [19]

      [19] Gür T M, Homel M, Virkar A V. J Power Sources, 2010, 195: 1085

    20. [20]

      [20] Li C, Shi Y X, Cai N S. J Power Sources, 2010, 195: 4660

    21. [21]

      [21] Nabae Y, Pointon K D, Irvine J T S. J Electrochem Soc, 2009, 156: B716

    22. [22]

      [22] Wu Y Z, Su C, Zhang C M, Ran R, Shao Z P. Electrochem Commun, 2009, 11: 1265

    23. [23]

      [23] Chien A C, Chuang S S C. J Power Sources, 2011, 196: 4719

    24. [24]

      [24] Chien A C, Siengchum T, Chuang S S C. ECS Trans, 2011, 33: 75

    25. [25]

      [25] Gorte R J, Vohs J M. J Catal, 2003, 216: 477

    26. [26]

      [26] Tang X L, Zhang B C, Li Y, Xu Y D, Xin Q, Shen W J. Appl Catal A, 2005, 288: 116

    27. [27]

      [27] Chen G X, Li Q L, Wei Y C, Fang W P, Yang Y Q. Chin J Catal (陈国星, 李巧灵, 魏育才, 方维平, 杨意泉. 催化学报), 2013, 34: 322

    28. [28]

      [28] Zhan W C, Guo Y, Gong X Q, Guo Y L, Wang Y Q, Lu G Z. Chin J Catal (詹望成, 郭耘, 龚学庆, 郭扬龙, 王艳芹, 卢冠忠. 催化学报), 2014, 35: 1238

    29. [29]

      [29] Sun J F, Zhang L, Ge C Y, Tang C J, Dong L. Chin J Catal (孙敬方, 张雷, 葛成艳, 汤常金, 董林. 催化学报), 2014, 35: 1347

    30. [30]

      [30] Antolini E. Appl Catal B, 2009, 88: 1

    31. [31]

      [31] Li X, Zhu Z H, De Marco R, Bradley J, Dicks A. J Power Sources, 2010, 195: 4051

    32. [32]

      [32] Li X, Zhu Z H, Chen J L, de Marco R, Dicks A, Bradley J, Lu G Q. J Power Sources, 2009, 186: 1

    33. [33]

      [33] Lu L M, Kong C H, Sahajwalla V, Harris D. Fuel, 2012, 81: 1215

    34. [34]

      [34] Lahijani P, Zainal Z A, Mohammadi M, Mohamed A R. Renew Sust Energ Rev, 2015, 41: 615

    35. [35]

      [35] Kulkarni A, Giddey S, Badwal S P S, Paul G. Electrochim Acta, 2014, 121: 34

    36. [36]

      [36] Kaklidis N, Kyriakou V, Garagounis I, Arenillas A, Menéndez J A, Marnellos G E, Konsolakis M. RSC Adv, 2014, 4: 18792

    37. [37]

      [37] Ju H K, Uhm S, Kim J W, Song R H, Choi H, Lee S H, Lee J. J Power Sources, 2012, 198: 36

  • 加载中
    1. [1]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    2. [2]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    3. [3]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    4. [4]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    5. [5]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    6. [6]

      Qi HuangJun LiaoJingjing LiZhengyan GuXinkang ZhangMingxue SunWenqi MengGuanchao MaoZhipeng PeiShanshan ZhangSongling LiChuan ZhangYunqin WangJihao LiuTingbin ShuMin TaoYing LuKai XiaoQingqiang XuJincai Lu . Curcumin-loaded ceria nanoenzymes for dual-action suppression of inflammation and alleviation of oxidative damage in the treatment of acute lung injury. Chinese Chemical Letters, 2025, 36(4): 109914-. doi: 10.1016/j.cclet.2024.109914

    7. [7]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    8. [8]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    9. [9]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    10. [10]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    11. [11]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    12. [12]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    13. [13]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    14. [14]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    15. [15]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    16. [16]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    17. [17]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    18. [18]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    19. [19]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    20. [20]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

Metrics
  • PDF Downloads(405)
  • Abstract views(459)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return