Citation:
M. Konsolakis, G. E. Marnellos, A. Al-Musa, N. Kaklidis, I. Garagounis, V. Kyriakou. Carbon to electricity in a solid oxide fuel cell combined with an internal catalytic gasification process[J]. Chinese Journal of Catalysis,
;2015, 36(4): 509-516.
doi:
10.1016/S1872-2067(14)60262-X
-
This study explores strategies to develop highly efficient direct carbon fuel cells (DCFCs) by combining a solid-oxide fuel cell (SOFC) with a catalyst-aided carbon-gasification process. This system employs Cu/CeO2 composites as both anodic electrodes and carbon additives in a cell of the type: carbon|Cu-CeO2/YSZ/Ag|air. The study investigates the impact on in situ carbon-gasification and DCFC performance characteristics of catalyst addition and variation in the carrier gas used (inert He versus reactive CO2). The results indicate that cell performance is significantly improved by infusing the catalyst into the carbon feedstock and by employing CO2 as the carrier gas. At 800 ℃, the maximum power output is enhanced by approximately 40% and 230% for carbon/CO2 and carbon/catalyst/CO2 systems, respectively, compared with that of the carbon/He configuration. The increase observed when employing the catalyst and CO2 as the carrier gas can be primarily attributed to the pronounced effect of the catalyst on carbon-gasification through the reverse-Boudouard reaction, and the subsequent in situ electro-oxidation of CO at the anode three-phase boundary.
-
-
-
[1]
[1] International Energy Outlook 2011, U.S. Energy Information administration, http: // www.eia.gov / forecasts / ieo / pdf / 0484 (2011). pdf
-
[2]
[2] Wang J G, Li Y W, Han Y Z, Sun Y H, Fang Y T, Zhao J T, Qin Z F. Chin J Catal (王建国, 李永旺, 韩怡卓, 孙予罕, 房倚天, 赵建涛, 秦张峰. 催化学报), 2009, 30: 770
-
[3]
[3] Giddey S, Badwal S P S, Kulkarni A, Munnings C. Prog Energ Combust Sci, 2012, 38: 360
-
[4]
[4] Kirubakaran A, Jain S, Nema R K. Renew Sust Energ Rev, 2009, 13: 2430
-
[5]
[5] Wu W M, Liu Z B, Zhao Z, Zhang X M, Ou D R, Tu B F, Cui D A, Cheng M J. Chin J Catal (武卫明, 刘中波, 赵哲, 张小敏, 区定容, 涂宝峰, 崔大安, 程谟杰. 催化学报), 2014, 35: 1376
-
[6]
[6] Zhang L M, Cong Y, Yang W S, Lin L W. Chin J Catal (张丽敏, 丛铀, 杨维慎, 林励吾. 催化学报), 2007, 28: 749
-
[7]
[7] Rady A C, Giddey S, Badwal S P S, Ladewing B P, Bhattacharya S. Energy Fuels, 2012, 26: 1471
-
[8]
[8] Gür T M. Chem Rev, 2013, 113: 6179
-
[9]
[9] Li X, Zhu Z, De Marco R, Bradley J, Dicks A. J Phys Chem A, 2010, 114: 3855
-
[10]
[10] Nürnberger S, Bussar R, Desclaux P, Franke B, Rzepka M, Stimming U. Energy Environ Sci, 2010, 3: 150
-
[11]
[11] Zhang J B, Zhong Z P, Zhao J X, Yang M, Li W L, Zhang H Y. Can J Chem Eng, 2012, 90: 762
-
[12]
[12] Lee C G, Ahn K S, Lim H C, Oh J M. J Power Sources, 2004, 125: 166
-
[13]
[13] Jain S, Lakeman B, Pointon K D, Irvine J T. In: Eguchi K, Singhai S C, Yokokawa H, Mizusaki H, Eds. Solid Oxide Fuel Cells 10 (SOFC-X). New York: the Electrochemical Society, 2007. 829
-
[14]
[14] Zecevic S, Patton E M, Parhami P. Carbon, 2004, 422: 1983
-
[15]
[15] Cherepy N J, Krueger R, Fiet K J, Jankowski A F, Cooper J F. J Electrochem Soc, 2005, 152: A80
-
[16]
[16] Dicks A L. J Power Sources, 2006, 156: 128
-
[17]
[17] Cao D X, Sun Y, Wang G L. J Power Sources, 2007, 167: 250
-
[18]
[18] Tang Y B, Liu J. Int J Hydrogen Energy, 2011, 35: 11188
-
[19]
[19] Gür T M, Homel M, Virkar A V. J Power Sources, 2010, 195: 1085
-
[20]
[20] Li C, Shi Y X, Cai N S. J Power Sources, 2010, 195: 4660
-
[21]
[21] Nabae Y, Pointon K D, Irvine J T S. J Electrochem Soc, 2009, 156: B716
-
[22]
[22] Wu Y Z, Su C, Zhang C M, Ran R, Shao Z P. Electrochem Commun, 2009, 11: 1265
-
[23]
[23] Chien A C, Chuang S S C. J Power Sources, 2011, 196: 4719
-
[24]
[24] Chien A C, Siengchum T, Chuang S S C. ECS Trans, 2011, 33: 75
-
[25]
[25] Gorte R J, Vohs J M. J Catal, 2003, 216: 477
-
[26]
[26] Tang X L, Zhang B C, Li Y, Xu Y D, Xin Q, Shen W J. Appl Catal A, 2005, 288: 116
-
[27]
[27] Chen G X, Li Q L, Wei Y C, Fang W P, Yang Y Q. Chin J Catal (陈国星, 李巧灵, 魏育才, 方维平, 杨意泉. 催化学报), 2013, 34: 322
-
[28]
[28] Zhan W C, Guo Y, Gong X Q, Guo Y L, Wang Y Q, Lu G Z. Chin J Catal (詹望成, 郭耘, 龚学庆, 郭扬龙, 王艳芹, 卢冠忠. 催化学报), 2014, 35: 1238
-
[29]
[29] Sun J F, Zhang L, Ge C Y, Tang C J, Dong L. Chin J Catal (孙敬方, 张雷, 葛成艳, 汤常金, 董林. 催化学报), 2014, 35: 1347
-
[30]
[30] Antolini E. Appl Catal B, 2009, 88: 1
-
[31]
[31] Li X, Zhu Z H, De Marco R, Bradley J, Dicks A. J Power Sources, 2010, 195: 4051
-
[32]
[32] Li X, Zhu Z H, Chen J L, de Marco R, Dicks A, Bradley J, Lu G Q. J Power Sources, 2009, 186: 1
-
[33]
[33] Lu L M, Kong C H, Sahajwalla V, Harris D. Fuel, 2012, 81: 1215
-
[34]
[34] Lahijani P, Zainal Z A, Mohammadi M, Mohamed A R. Renew Sust Energ Rev, 2015, 41: 615
-
[35]
[35] Kulkarni A, Giddey S, Badwal S P S, Paul G. Electrochim Acta, 2014, 121: 34
-
[36]
[36] Kaklidis N, Kyriakou V, Garagounis I, Arenillas A, Menéndez J A, Marnellos G E, Konsolakis M. RSC Adv, 2014, 4: 18792
-
[37]
[37] Ju H K, Uhm S, Kim J W, Song R H, Choi H, Lee S H, Lee J. J Power Sources, 2012, 198: 36
-
[1]
-
-
-
[1]
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
-
[2]
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
-
[3]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[4]
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
-
[5]
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
-
[6]
Qi Huang , Jun Liao , Jingjing Li , Zhengyan Gu , Xinkang Zhang , Mingxue Sun , Wenqi Meng , Guanchao Mao , Zhipeng Pei , Shanshan Zhang , Songling Li , Chuan Zhang , Yunqin Wang , Jihao Liu , Tingbin Shu , Min Tao , Ying Lu , Kai Xiao , Qingqiang Xu , Jincai Lu . Curcumin-loaded ceria nanoenzymes for dual-action suppression of inflammation and alleviation of oxidative damage in the treatment of acute lung injury. Chinese Chemical Letters, 2025, 36(4): 109914-. doi: 10.1016/j.cclet.2024.109914
-
[7]
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
-
[8]
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
-
[9]
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
-
[10]
Guoliang Liu , Zhiqiang Liu , Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308
-
[11]
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
-
[12]
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
-
[13]
Jing-Qi Tao , Shuai Liu , Tian-Yu Zhang , Hong Xin , Xu Yang , Xin-Hua Duan , Li-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263
-
[14]
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
-
[15]
Ling Fang , Sha Wang , Shun Lu , Fengjun Yin , Yujie Dai , Lin Chang , Hong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864
-
[16]
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
-
[17]
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
-
[18]
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
-
[19]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[20]
Junyi Yu , Yin Cheng , Anhong Cai , Xianfeng Huang , Qingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549
-
[1]
Metrics
- PDF Downloads(405)
- Abstract views(458)
- HTML views(4)