Citation:
	            
		            Lin  Ge, Chengjie  Zang, Feng  Chen. The enhanced Fenton-like catalytic performance of PdO/CeO2 for the degradation of acid orange 7 and salicylic acid[J]. Chinese Journal of Catalysis,
							;2015, 36(3): 314-321.
						
							doi:
								10.1016/S1872-2067(14)60261-8
						
					
				
					
				
	        
- 
	                	A PdO/CeO2 catalyst was prepared by deposition-precipitation method and characterized with X-ray diffraction, high-resolution transmission electron microscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy and Raman spectroscopy. The results show that the Pd is presented as Pd2+ in the catalyst. The interaction between the deposited PdO and CeO2 increases the Ce3+ content. The catalytic activity of PdO/CeO2 was tested in the heterogeneous Fenton-like degradation of acid orange 7 (AO7) and salicylic acid (SA), both in the dark and under visible irradiation. Deposition of PdO accelerates the Fen-ton-like degradation of SA, which reaches a maximum at 1.0 atom% PdO loading. A dye sensitization effect was seen with AO7 under visible irradiation. Dye sensitization promotes the regeneration of Ce3+ by interfacial peroxides species through interfacial electron injection. Consequently, the combined effects of PdO loading and visible light irradiating enhanced the Fenton-like activity to a reaction rate constant of 3.90 h-1 for the 1.0 PdO/CeO2, a ca. 50-fold improvement.
- 
								Keywords:
								
 - Fenton-like reaction,
 - Ceria,
 - Palladium oxide,
 - Degradation,
 - Hydrogen peroxide
 
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G. Catal Today, 1999, 50: 353
 - 
			
                    [2]
                
			
[2] Sun C W, Li H, Chen L Q. Energy Environ Sci, 2012, 5: 8475
 - 
			
                    [3]
                
			
[3] Besson M, Descorme C, Bernardi M, Gallezot P, di Gregorio F, Grosjean N, Pham Minh D, Pintar A. Environ Technol, 2010, 31: 1441
 - 
			
                    [4]
                
			
[4] Singh P, Hegde M S. Chem Mater, 2009, 21: 3337
 - 
			
                    [5]
                
			
[5] Nolan M. J Phys Chem C, 2011, 115: 6671
 - 
			
                    [6]
                
			
[6] Tanaka A, Hashimoto K, Kominami H. J Am Chem Soc, 2012, 134: 14526
 - 
			
                    [7]
                
			
[7] Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M. Chem Mater, 2010, 22: 6183
 - 
			
                    [8]
                
			
[8] Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. J Am Chem Soc, 2012, 134: 10251
 - 
			
                    [9]
                
			
[9] Gnanamani M K, Jacobs G, Shafer W D, Ribeiro M C, Pendyala V R R, Ma W P, Davis B H. Catal Commun, 2012, 25: 12
 - 
			
                    [10]
                
			
[10] Guzman J, Carrettin S, Corma A. J Am Chem Soc, 2005, 127: 3286
 - 
			
                    [11]
                
			
[11] Zhou H P, Wu H S, Shen J, Yin A X, Sun L D, Yan C H. J Am Chem Soc, 2010, 132: 4998
 - 
			
                    [12]
                
			
[12] Wieder N L, Cargnello M, Bakhmutsky K, Montini T, Fornasiero P, Gorte R J. J Phys Chem C, 2011, 115: 915
 - 
			
                    [13]
                
			
[13] Shen W J, Ichihashi Y, Okumura M, Matsumura Y. Catal Lett, 2000, 64: 23
 - 
			
                    [14]
                
			
[14] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789
 - 
			
                    [15]
                
			
[15] Colussi S, Gayen A, Camellone F M, Boaro M, Llorca J, Fabris S, Trovarelli A. Angew Chem Int Ed, 2009, 48: 8481
 - 
			
                    [16]
                
			
[16] Heckert E G, Seal S, Self W T. Environ Sci Technol, 2008, 42: 5014
 - 
			
                    [17]
                
			
[17] Ji P F, Tian B Z, Chen F, Zhang J L. Environ Technol, 2012, 33: 467
 - 
			
                    [18]
                
			
[18] Cai W D, Chen F, Shen X X, Chen L J, Zhang J L. Appl Catal B, 2010, 101: 160
 - 
			
                    [19]
                
			
[19] Chen F, Shen X X, Wang Y C, Zhang J L. Appl Catal B, 2012, 121: 223
 - 
			
                    [20]
                
			
[20] Wang Y C, Shen X X, Chen F. J Mol Catal A, 2014, 381: 38
 - 
			
                    [21]
                
			
[21] Ji P F, Zhang J L, Chen F, Anpo M. Appl Catal B, 2009, 85: 148
 - 
			
                    [22]
                
			
[22] Chen F, Shen X X. Appl Catal B, 2011, 105: 252
 - 
			
                    [23]
                
			
[23] Ge L, Chen T, Liu Z Q, Chen F. Catal Today, 2014, 224: 209
 - 
			
                    [24]
                
			
[24] Xiao L H, Sun K P, Xu X L, Li X N. Catal Commun, 2005, 6: 796
 - 
			
                    [25]
                
			
[25] Carrettin S, Concepción P, Corma A, López Nieto J M, Puntes V F. Angew Chem Int Ed, 2004, 43: 2538
 - 
			
                    [26]
                
			
[26] Lee Y, He G, Akey A J, Si R, Flytzani-Stephanopoulos M, Herman I P. J Am Chem Soc, 2011, 133: 12952
 - 
			
                    [27]
                
			
[27] McBride J R, Hass K C, Poindexter B D, Weber W H. J Appl Phys, 1994, 76: 2435
 - 
			
                    [28]
                
			
[28] Orge C A, Órfâo J J M, Pereira M F R, Duarte de Farias A M, Neto R C R, Fraga M A. Appl Catal B, 2011, 103: 190
 - 
			
                    [29]
                
			
[29] Pushkarev V V, Kovalchuk V I, d'Itri J L. J Phys Chem B, 2004, 108: 5341
 - 
			
                    [30]
                
			
[30] Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G. Surf Interf Anal, 2008, 40: 264
 - 
			
                    [31]
                
			
[31] Holgado J P, Alvarez R, Munuera G. Appl Surf Sci, 2000, 161: 301
 - 
			
                    [32]
                
			
[32] Tsunekawa S, Fukuda T, Kasuya A. Appl Surf Sci, 2000, 457: L437
 - 
			
                    [33]
                
			
[33] Korsvik C, Patil S, Seal S, Self W T. Chem Commun, 2007: 1056
 - 
			
                    [34]
                
			
[34] Watanabe S, Ma X, Song C. J Phys Chem C, 2009, 113: 14249
 - 
			
                    [35]
                
			
[35] Ji P F, Wang L Z, Chen F, Zhang J L. ChemCatChem, 2010, 2: 1552
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
 - 
				[2]
				
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
 - 
				[3]
				
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
 - 
				[4]
				
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
 - 
				[5]
				
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
 - 
				[6]
				
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
 - 
				[7]
				
Kangjuan Cheng , Chunxiao Liu , Youpeng Wang , Qiu Jiang , Tingting Zheng , Xu Li , Chuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112
 - 
				[8]
				
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
 - 
				[9]
				
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
 - 
				[10]
				
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
 - 
				[11]
				
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
 - 
				[12]
				
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
 - 
				[13]
				
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
 - 
				[14]
				
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
 - 
				[15]
				
Yanyan Zhao , Zhen Wu , Yong Zhang , Bicheng Zhu , Jianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142
 - 
				[16]
				
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
 - 
				[17]
				
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
 - 
				[18]
				
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
 - 
				[19]
				
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
 - 
				[20]
				
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(205)
 - Abstract views(1091)
 - HTML views(97)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: