Citation:
Yanli Cui, Xiaoning Guo, Yingyong Wang, Xiangyun Guo. Carbonylative Suzuki coupling reactions of aryl iodides with arylboronic acids over Pd/SiC[J]. Chinese Journal of Catalysis,
;2015, 36(3): 322-327.
doi:
10.1016/S1872-2067(14)60258-8
-
High surface area SiC has been used to prepare a Pd/SiC catalyst using the liquid reduction method, and the resulting catalyst was used for the carbonylative Suzuki coupling reaction of aryl iodides with arylboronic acids. The catalyst was also characterized by X-ray diffraction, inductively coupled plasma-mass spectroscopy and high-resolution transmission electron microscopy. The results of these analyses showed that homogeneous Pd nanoparticles with a mean diameter of 2.8 nm were uniformly dispersed on the SiC surface. Optimization of the reaction conditions for the carbonylative Suzuki coupling reaction, including the solvent, base, pressure, temperature and reaction time, revealed that the model reaction of iodobenzene (1.0 mmol) with phenylboronic acid (1.5 mmol) could reach 90% conversion with a selectivity of 99% towards the diphenyl ketone using 3 wt% Pd/SiC under 1.0 MPa of CO pressure at 100 ℃ for 8 h with K2CO3 (3.0 mmol) as the base and anisole as the solvent. The Pd/SiC catalyst exhibited broad substrate scope towards the carbonylative Suzuki coupling reaction of aryl iodides with arylboronic acids bearing a variety of different substituents. Furthermore, the Pd/SiC catalyst exhibited good recyclability properties and could be recovered and reused up to five times with the conversion of iodobenzene decreasing only slightly from 90% to 76%. The decrease in the catalytic activity after five rounds was attributed to the loss of active Pd during the organic reaction.
-
-
-
[1]
[1] Wang X J, Zhang L, Sun X F, Xu Y B, Krishnamurthy D, Senanayake C H. Org Lett, 2005, 7: 5593
-
[2]
[2] Hatano B, Kadokaw J, Tagaya H. Tetrahedron Lett, 2002, 43: 5859
-
[3]
[3] Gmouh S, Yang H L, Vaultier M. Org Lett, 2003, 5: 2219
-
[4]
[4] Yamamoto T, Kohara T, Yamamoto A. Chem Lett, 1976, 11: 1217
-
[5]
[5] Hatanaka Y, Fukushima S, Hiyama T. Tetrahedron, 1992, 48: 2113
-
[6]
[6] Brunet J J, Chauvin R. Chem Soc Rev, 1995, 24: 89
-
[7]
[7] Fillion E, Fishlock D, Wilsily A, Goll J M. J Org Chem, 2005, 70: 1316
-
[8]
[8] Jang D O, Moon K S, Cho D H, Kim J G. Tetrahedron Lett, 2006, 47: 6063
-
[9]
[9] Ishiyama T, Kizaki H, Miyaura N, Suzuki A. Tetrahedron Lett, 1993, 34: 7595
-
[10]
[10] Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J Org Chem, 1998, 63: 4726
-
[11]
[11] Khedkar M V, Sasaki T, Bhanage B M. RSC Adv, 2013, 3: 7791
-
[12]
[12] Niu J R, Liu M M, Wang P, Long Y, Xie M, Li R, Ma J T. New J Chem, 2014, 38: 1471
-
[13]
[13] Zhan Y Y, Cai G H, Zheng Y, Shen X N, Zheng Y, Wei K M. Acta Phys- Chim Sin (詹瑛瑛, 蔡国辉, 郑勇, 沈小女, 郑瑛, 魏可镁. 物理化学学报), 2008, 24: 171
-
[14]
[14] Li X Y, Wang F G, Pan X L, Bao X H. Chin J Catal (李星运, 王发根, 潘秀莲, 包信和. 催化学报), 2013, 34: 257
-
[15]
[15] Liu H T, Li S Q, Zhang S B, Wang J M, Zhou G J, Chen L, Wang X L. Catal Commun, 2008, 9: 51
-
[16]
[16] Wang Y W, Guo X N, Dong L L, Jin G Q, Wang Y Y, Guo X Y. Int J Hydrogen Energy, 2013, 38: 12733
-
[17]
[17] Zhang G Q, Peng J X, Sun T J, Wang S D. Chin J Catal (张国权, 彭家喜, 孙天军, 王树东. 催化学报), 2013, 34: 1745
-
[18]
[18] Li H L, Lei Y G, Huang Y, Fang Y P, Xu Y H, Zhu L, Li X. J Nat Gas Chem, 2011, 20: 145
-
[19]
[19] Jiao Z F, Guo X N, Zhai Z Y, Jin G Q, Wang X M, Guo X Y. Catal Sci Technol, 2014, 4: 2494
-
[1]
-
-
-
[1]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[2]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[3]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[4]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[5]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[6]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[7]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[8]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[9]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[10]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[11]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[12]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[13]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[14]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[15]
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
-
[16]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[18]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[19]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[20]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[1]
Metrics
- PDF Downloads(199)
- Abstract views(649)
- HTML views(37)