Citation:
	            
		            Luhua  Jiang, Qiwen  Tang, Jing  Liu, Gongquan  Sun. Elucidation of oxygen reduction reaction pathway on carbon-supported manganese oxides[J]. Chinese Journal of Catalysis,
							;2015, 36(2): 175-180.
						
							doi:
								10.1016/S1872-2067(14)60249-7
						
					
				
					
				
	        
- 
	                	The oxygen reduction reaction (ORR) is a complex process. This is particularly the case for carbon-supported electrocatalysts in alkaline electrolytes, because carbon can catalyze the ORR via a two-electron transfer to generate hydroperoxide (HO2-), which subsequently undergoes either chemical decomposition to generate O2 and OH- (HODR) or electrochemical reduction to OH- (HORR). In this study, we elucidated the ORR pathway on a series of carbon-supported manganese oxides, which have been extensively studied as electrocatalysts in alkaline electrolytes. A comparison of the turnover frequencies of the HODR and HORR showed that although an apparent four-electron transfer process was identified when the HO2- yield was measured using the rotating ring disk electrode technique, the real ORR pathway involved a two-electron transfer process to generate HO2-, with subsequent chemical decomposition of HO2-. These results will help us to understand the intrinsic catalytic behavior of carbon-supported transition-metal oxides for the ORR in alkaline electrolytes.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] Spendelow J S, Wieckowski A. Phys Chem Chem Phys, 2007, 9: 2654
 - 
			
                    [2]
                
			
[2] Yeager E. Electrochim Acta, 1984, 29: 1527
 - 
			
                    [3]
                
			
[3] Zhang J, Tang S H, Liao L Y, Yu W F. Chin J Catal (张浩, 唐水花, 廖龙渝, 郁卫飞. 催化学报), 2013, 34: 1051
 - 
			
                    [4]
                
			
[4] Liu J, Jiang L H, Tang Q W, Zhang B S, Su D S, Wang S L, Sun G Q. ChemSusChem, 2012, 5: 2315
 - 
			
                    [5]
                
			
[5] Liu J, Jiang L H, Zhang B S, Jin J T, Su D S, Wang S L, Sun G Q. ACS Catal, 2014, 4: 2998
 - 
			
                    [6]
                
			
[6] Mao L Q, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T. Electrochim Acta, 2003, 48: 1015
 - 
			
                    [7]
                
			
[7] Ohsaka T, Mao L Q, Arihara K, Sotomura T. Electrochem Commun, 2004, 6: 273
 - 
			
                    [8]
                
			
[8] Tang Q W, Jiang L H, Liu J, Wang S L, Sun G Q. ACS Catal, 2014, 4: 457
 - 
			
                    [9]
                
			
[9] Paulus U A, Schmidt T J, Gasteiger H A, Behm R J. J Electroanal Chem, 2001, 495: 134
 - 
			
                    [10]
                
			
[10] Jaouen F, Dodelet J P. J Phys Chem C, 2009, 113: 15422
 - 
			
                    [11]
                
			
[11] Paliteiro C, Hamnett A, Goodenough J B. J Electroanal Chem, 1987, 233: 147
 - 
			
                    [12]
                
			
[12] Bard A J, Faulkner L R. Electrochemical Methods - Fundamentals and Applications. New York: John Wiley & Sons, 1980. 237
 - 
			
                    [13]
                
			
[13] Bonakdarpour A, Lefevre M, Yang R Z, Jaouen F, Dahn T, Dodelet J P, Dahn J R. Electrochem Solid-State Lett, 2008, 11: B105
 - 
			
                    [14]
                
			
[14] Jaouen F. J Phys Chem C, 2009, 113: 15433
 - 
			
                    [15]
                
			
[15] Herrmann I, Koslowski U I, Radnik J, Fiechter S, Bogdanoff P. ECS Trans, 2008, 13(17): 143
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
 - 
				[2]
				
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
 - 
				[3]
				
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
 - 
				[4]
				
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
 - 
				[5]
				
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
 - 
				[6]
				
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
 - 
				[7]
				
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
 - 
				[8]
				
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
 - 
				[9]
				
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
 - 
				[10]
				
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
 - 
				[11]
				
Yan Zhang , Xiaoyan Cao , Yiming Li , Shuwei Xia , Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027
 - 
				[12]
				
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
 - 
				[13]
				
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
 - 
				[14]
				
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
 - 
				[15]
				
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
 - 
				[16]
				
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
 - 
				[17]
				
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
 - 
				[18]
				
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
 - 
				[19]
				
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
 - 
				[20]
				
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(234)
 - Abstract views(1207)
 - HTML views(250)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: